Learn More
BACKGROUND Despite widespread use of acne lesion counting, little has been published on its reliability, particularly for multiple raters. OBJECTIVE Our purpose was to assess reliability of acne lesion counting with the use of a five-segment facial template. METHODS After training, 12 raters each evaluated 12 patients in randomized order, in the morning(More)
We present the architecture of the Deep Computing Messaging Framework (DCMF), a message passing runtime designed for the Blue Gene/P machine and other HPC architectures. DCMF has been designed to easily support several programming paradigms such as the Message Passing Interface (MPI), Aggregate Remote Memory Copy Interface (ARMCI), Charm++, and others. This(More)
The Blue Genet/L (BG/L) supercomputer, with 65,536 dual-processor compute nodes, was designed from the ground up to support efficient execution of massively parallel message-passing programs. Part of this support is an optimized implementation of the Message Passing Interface (MPI), which leverages the hardware features of BG/L. MPI for BG/L is implemented(More)
BACKGROUND This study examined the relationships of pubertal maturation and sex steroid hormones to the development of acne in young girls. Black (n = 317) and white (n = 306) premenarchal girls with a mean age of 9.97 +/- 0.62 years were evaluated for acne prevalence and severity, pubic hair and areolar maturation, and sex steroid hormone levels. RESULTS(More)
The Blue Gene/Q machine is the next generation in the line of IBM massively parallel supercomputers, designed to scale to 262144 nodes and sixteen million threads. With each BG/Q node having 68 hardware threads, hybrid programming paradigms, which use message passing among nodes and multi-threading within nodes, are ideal and will enable applications to(More)
The BlueGene/L supercomputer will consist of 65,536 dual-processor compute nodes interconnected by two high-speed networks: a three-dimensional torus network and a tree topology network. Each compute node can only address its own local memory, making message passing the natural programming model for BlueGene/L. In this paper we present our implementation of(More)
With the ever-increasing numbers of cores per node on HPC systems, applications are increasingly using threads to exploit the shared memory within a node, combined with MPI across nodes. Achieving high performance when a large number of concurrent threads make MPI calls is a challenging task for an MPI implementation. We describe the design and(More)
The Blue Gene/L system at the Department of Energy Lawrence Livermore National Laboratory in Livermore, California is the world’s most powerful supercomputer. It has achieved groundbreaking performance in both standard benchmarks as well as real scientific applications. In that process, it has enabled new science that simply could not be done before. Blue(More)
This paper discusses the design and implementation of a one-sided communication interface for the IBM Blue Gene/L supercomputer. This interface facilitates ARMCI and the Global Arrays toolkit and can be used by other one-sided communication libraries. New protocols, interrupt driven communication, and compute node kernel enhancements were required to enable(More)