Learn More
A silk-fiber matrix was studied as a suitable material for tissue engineering anterior cruciate ligaments (ACL). The matrix was successfully designed to match the complex and demanding mechanical requirements of a native human ACL, including adequate fatigue performance. This protein matrix supported the attachment, expansion and differentiation of adult(More)
The high frequency and mortality associated with breast cancer metastasis to bone has motivated efforts to elucidate tumor-stroma interactions in the bone microenvironment contributing to invasion and proliferation of metastatic cells. The development of engineered tissues has prompted the integration of engineered bone scaffolds into animal models as(More)
A significant need exists for long-term degradable biomaterials which can slowly and predictably transfer a load-bearing burden to developing biological tissue. In this study Bombyx mori silk fibroin yarns were incubated in 1mg/ml Protease XIV at 37 degrees C to create an in vitro model system of proteolytic degradation. Samples were harvested at designated(More)
In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will(More)
Utilizing a two-dimensional tissue culture plastic screening system and a fractional factorial design, specific media formulations and growth factor combinations were determined that support human bone marrow stromal cell (BMSC) differentiation toward fibroblast characteristics for utilization in tissue engineering, specifically cell morphology and(More)
Elastomeric, fully degradable and biocompatible biomaterials are rare, with current options presenting significant limitations in terms of ease of functionalization and tunable mechanical and degradation properties. We report a new method for covalently crosslinking tyrosine residues in silk proteins, via horseradish peroxidase and hydrogen peroxide, to(More)
Metallic fixation systems are currently the gold standard for fracture fixation but have problems including stress shielding, palpability and temperature sensitivity. Recently, resorbable systems have gained interest because they avoid removal and may improve bone remodelling due to the lack of stress shielding. However, their use is limited to paediatric(More)
Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light-matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning(More)
To evaluate the appropriate time frame for applying mechanical stimuli to induce mesenchymal stromal cell (MSC) differentiation for ligament tissue engineering, developmental cell phenotypes were monitored during a period of in vitro culture. MSCs were seeded onto surface-modified silk fibroin fiber matrices and cultured in Petri dishes for 15 days. Cell(More)
A paradigm shift for implantable medical devices lies at the confluence between regenerative medicine, where materials remodel and integrate in the biological milieu, and technology, through the use of recently developed material platforms based on biomaterials and bioresorbable technologies such as optics and electronics. The union of materials and(More)