Jochen Weiss

Learn More
There is a pressing need for edible delivery systems to encapsulate, protect, and release bioactive lipids within the food, medical, and pharmaceutical industries. The fact that these delivery systems must be edible puts constraints on the type of ingredients and processing operations that can be used to create them. Emulsion technology is particularly(More)
In recent years, a number of studies have produced evidence to suggest that consuming carotenoids may provide a variety of health benefits including a reduced incidence of a number of cancers, reduced risk of cardiovascular disease, and improved eye health. Evolving evidence on the health benefits of several carotenoids has sparked interest in incorporating(More)
The application of 20 kHz high-intensity ultrasound during extraction of oil from two varieties of soybeans (TN 96-58 and N 98-4573) using hexane, isopropanol and a 3:2 hexane–isopropanol mixture was evaluated. In a simplified extraction procedure, ground soybeans were added to solvents and ultrasonicated between 0 and 3 h at ultrasonic intensity levels(More)
Nanoemulsions can be used for the encapsulation and oral delivery of bioactive lipophilic components, such as nutraceuticals and pharmaceuticals. There is growing interest in the utilization of low-energy methods to produce edible nanoemulsions. In this study, we examined the influence of system composition and preparation conditions on the formation of(More)
This study examined the effects of three chelating agents (EDTA, disodium pyrophosphate [DSPP], and pentasodium tripolyphosphate [PSTPP]) on the inhibition of the growth of Escherichia coli O157:H7 by lysozyme. The objective of this study was to identify replacement chelators that exhibit synergistic properties similar to those of EDTA. The inhibitory(More)
Liposomes, spherical bilayer vesicles from dispersion of polar lipids in aqueous solvents, have been widely studied for their ability to act as drug delivery vehicles by shielding reactive or sensitive compounds prior to release. Liposome entrapment has been shown to stabilize encapsulated, bioactive materials against a range of environmental and chemical(More)
There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical(More)
The efficacy and stability against Listeria monocytogenes of nisin and lysozyme encapsulated in phospholipid liposomes was evaluated. Antimicrobial-containing liposomes were prepared by hydrating dried lipids with buffer containing nisin, nisin plus the fluorescence probe calcein, or calcein and lysozyme. Mixtures were then centrifuged and sonicated, and(More)
Changes in consumer demand of meat products as well as increased global competition are causing an unprecedented spur in processing and ingredient system developments within the meat manufacturing sector. Consumers demand healthier meat products that are low in salt, fat, cholesterol, nitrites and calories in general and contain in addition health-promoting(More)
Evidence that dietary lycopene decreases the risk for a number of health conditions has generated new opportunities for the addition of lycopene to functional foods. This work examined the potential of oil-in-water emulsions as a lycopene delivery system for foods. Oil-in-water emulsions containing lycopene were prepared using different kinds of surfactant(More)