Jochen Weile

Learn More
How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian(More)
Drug development is expensive and prone to failure. It is potentially much less risky and expensive to reuse a drug developed for one condition for treating a second disease, than it is to develop an entirely new compound. Systematic approaches to drug repositioning are needed to increase throughput and find candidates more reliably. Here we address this(More)
BACKGROUND Atherosclerosis (AT) is a chronic inflammatory disease characterized by the accumulation of inflammatory cells, lipoproteins and fibrous tissue in the walls of arteries. AT is the primary cause of heart attacks and stroke and is the leading cause of death in Western countries. To date, the pathogenesis of AT is not well-defined. Studies have(More)
The introduction of high-throughput genome sequencing and post-genome analysis technologies, e.g. DNA microarray approaches, has created the potential to unravel and scrutinize complex gene-regulatory networks on a large scale. The discovery of transcriptional regulatory interactions has become a major topic in modern functional genomics. To facilitate the(More)
BACKGROUND A precise experimental identification of transcription factor binding motifs (TFBMs), accurate to a single base pair, is time-consuming and diffcult. For several databases, TFBM annotations are extracted from the literature and stored 5' --> 3' relative to the target gene. Mixing the two possible orientations of a motif results in poor(More)
Although we now routinely sequence human genomes, we can confidently identify only a fraction of the sequence variants that have a functional impact. Here we developed a deep mutational scanning framework that produces exhaustive maps for human missense variants by combining random codon-mutagenesis and multiplexed functional variation assays with(More)
High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary(More)
MOTIVATION Biological experiments give insight into networks of processes inside a cell, but are subject to error and uncertainty. However, due to the overlap between the large number of experiments reported in public databases it is possible to assess the chances of individual observations being correct. In order to do so, existing methods rely on(More)
MOTIVATION The rise of high-throughput technologies in the post-genomic era has led to the production of large amounts of biological data. Many of these datasets are freely available on the Internet. Making optimal use of these data is a significant challenge for bioinformaticians. Various strategies for integrating data have been proposed to address this(More)