Jochen Scholz

  • Citations Per Year
Learn More
A concept for dynamic mixture formation investigations of fuel/air mixtures is presented which can also be applied for many other laser induced fluorescence (LIF) applications. Double-pulse LIF imaging was used to gain insight into dynamic mixture formation processes. The setup consists of a modified standard PIV setup. The “fuel/air ratio measurement by(More)
These investigations aim to validate the applicability of a concept for fuel-air-ratio measurements by laser-induced fluorescence (FARLIF) at elevated temperatures. For the commonly used model fuel isooctane with the fluorescence tracer toluene the FARLIF applicability was confirmed with an excitation wavelength of 266 nm for fuel-air mixtures with λ ≥ 0.2(More)
Laser induced fluorescence is used to develop a 2D measurement technique for mixture formation analysis of fuel and air in a broad temperature regime from 398 K up to 548 K. The measurement principle is called FARLIF (fuel-air ratio by laser-induced fluorescence). Its application is tested on the tracer toluene in the non-fluorescent model fuel isooctane as(More)
  • 1