Jochen Schmid

Learn More
BACKGROUND The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 --> 3)-beta-linked glucose with a (1 --> 6)-beta-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the(More)
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is(More)
Microbial polysaccharides have a wide range of functional properties and show high relevance in industrial applications. The possibility to create tailor-made polysaccharides by genetic engineering will further enhance the product portfolio and may open new fields of application. Here, we have examined in detail the recently sequenced genome of the(More)
In analyzing the reductive power of Escherichia coli K-12 for metabolic engineering approaches, we identified YahK and YjgB, two medium-chain dehydrogenases/reductases subgrouped to the cinnamyl alcohol dehydrogenase family, as being important. Identification was achieved using a stepwise purification protocol starting with crude extract. For exact(More)
Microbial exopolysaccharides (EPS) are biogenic and biodegradable polymers. The range of their application is extending steadily and in some areas they are already competing with conventional petrochemical products such as polyacrylates. Despite growing interest in microbial EPS, biosynthesis and production on a molecular scale are still not fully(More)
Microbial exopolysaccharides (EPS) are a structurally very diverse class of molecules. A number of them have found their application in rather diverging fields that extend from medicine, food, and cosmetics on the one side to construction, drilling, and chemical industry on the other side. The analysis of microbial strains for their competence in(More)
Many microorganisms are capable of producing and secreting exopolysaccharides (EPS), which have important implications in medical fields, food applications or in the replacement of petro-based chemicals. We describe an analytical platform to be automated on a liquid handling system that allows the fast and reliable analysis of the type and the amount of EPS(More)
Uronate dehydrogenases catalyse the oxidation of uronic acids to aldaric acids, which represent 'top value-added chemicals' that have the potential to substitute petroleum-derived chemicals. The identification and annotation of three uronate dehydrogenases derived from Fulvimarina pelagi HTCC2506, Streptomyces viridochromogenes DSM 40736 and Oceanicola(More)
The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also(More)
BACKGROUND Hexuronic acids such as D-galacturonic acid and D-glucuronic acid can be utilized via different pathways within the metabolism of microorganisms. One representative, the oxidative pathway, generates α-keto-glutarate as the direct link entering towards the citric acid cycle. The penultimate enzyme, keto-deoxy glucarate dehydratase/decarboxylase,(More)