Jochen Schmid

Learn More
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is(More)
In analyzing the reductive power of Escherichia coli K-12 for metabolic engineering approaches, we identified YahK and YjgB, two medium-chain dehydrogenases/reductases subgrouped to the cinnamyl alcohol dehydrogenase family, as being important. Identification was achieved using a stepwise purification protocol starting with crude extract. For exact(More)
Since its first description in the early 1960s, scleroglucan attracted much attention from both academia and industry. Scleroglucan is an exopolysaccharide secreted by the basidiomycete Sclerotium rolfsii and appreciated as a multipurpose compound applicable in many industrial fields, including oil industry, food industry and pharmacy. In this review, the(More)
Certain cell types, especially primary human cells, favor a well-defined culture environment offering continuous supply of nutrients and oxygen and waste product removal. Several bioreactors based on special matrices or hollow fibers have been developed that provide such conditions. However, characterization of matrix re-organization or growth of tissue(More)
Most bioartificial liver support systems are based on hollow fiber capillaries within modified dialysis cartridges or more sophisticated bioreactor constructions. Due to their design microscopic follow-up of reorganization and growth of tissue between the hollow fibers is not possible. The SlideReactor is a simple hollow fiber based bioreactor construction(More)
Microbial exopolysaccharides (EPS) are a structurally very diverse class of molecules. A number of them have found their application in rather diverging fields that extend from medicine, food, and cosmetics on the one side to construction, drilling, and chemical industry on the other side. The analysis of microbial strains for their competence in(More)
The enzyme subclass of glycosyltransferases (GTs; EC 2.4) currently comprises 97 families as specified by CAZy classification. One of their important roles is in the biosynthesis of disaccharides, oligosaccharides, and polysaccharides by catalyzing the transfer of sugar moieties from activated donor molecules to other sugar molecules. In addition GTs also(More)
BACKGROUND The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 --> 3)-beta-linked glucose with a (1 --> 6)-beta-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the(More)
Microbial polysaccharides have a wide range of functional properties and show high relevance in industrial applications. The possibility to create tailor-made polysaccharides by genetic engineering will further enhance the product portfolio and may open new fields of application. Here, we have examined in detail the recently sequenced genome of the(More)
Microbial exopolysaccharides (EPS) are multifunctional biogenic polymers, which exist in highly diverse chemical structures. To facilitate a fast determination of the carbohydrate composition of novel isolated strains or modified EPS variants a fast screening and analytical method is required. The platform as realized and described in this article is based(More)