Jochen J. Sieber

Learn More
Most plasmalemmal proteins organize in submicrometer-sized clusters whose architecture and dynamics are still enigmatic. With syntaxin 1 as an example, we applied a combination of far-field optical nanoscopy, biochemistry, fluorescence recovery after photobleaching (FRAP) analysis, and simulations to show that clustering can be explained by(More)
Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins mediate organelle fusion in the secretory pathway. Different fusion steps are catalyzed by specific sets of SNARE proteins. Here we have used the SNAREs mediating the fusion of early endosomes and exocytosis, respectively, to investigate how pairing specificity is achieved.(More)
In the plasma membrane, syntaxin 1 and syntaxin 4 clusters define sites at which secretory granules and caveolae fuse, respectively. It is widely believed that lipid phases are mandatory for cluster formation, as cluster integrity depends on cholesterol. Here we report that the native lipid environment is not sufficient for correct syntaxin 1 clustering and(More)
We demonstrate the effectiveness of a genetically encoded Malachite Green (MG) binding fluorogen activating protein (FAP) for live cell stimulated emission depletion nanoscopy (STED). Both extracellular and intracellular FAPs were tested in living cells using fluorogens with either membrane expressed FAP or as an intracellular FAP-actin fusion. Structures(More)
  • 1