Jochen Hepp

Learn More
A radioactive enkephalin affinity reagent, selective for the mu opioid receptor subtype, was synthesized by a fragment condensation method. 3H-BOC-Tyr-D-Ala-Gly-OH was prepared by catalytic tritiation of the protected iodinated tripeptide. The protected tritiated tripeptide and N(Me)Phe-CH2Cl were condensed by the mixed anhydride method. The protecting(More)
The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the(More)
A kappa-opioid receptor subtype was purified from a digitonin solubilized preparation of frog brain membranes using affinity chromatography. The affinity resin was prepared by coupling D-Ala2-Leu5-enkephalin to Sepharose-6B matrix. After elution of the receptor by 50 mumol naloxone, the kappa-subtype was separated from the mu- and delta-subtypes by gel(More)
The captopril-inhibited enzyme which forms [Met5]-enkephalin from [Met5]-enkephalin-Arg6,Phe7 in isolated rabbit ear artery was characterized further by using various natural substrate candidates/analogues ([Met5]-enkephalin-Arg6,Phe7 and its amide, [Met5]-enkephalin, angiotensin I and bradykinin), peptidase inhibitors such as captopril, enalaprilate and(More)
A kappa-opioid receptor subtype was purified from a digitonin extract of frog brain membranes, using affinity chromatography. The affinity resin was prepared by coupling dynorphin (1-10) to AH Sepharose 4B. The purified receptor binds 4,750 pmol [3H]ethylketocyclazocine (EKC) per mg protein (5,600-fold purification over the membrane-bound receptor) with a(More)
It has been previously found that chloromethyl ketone derivatives of enkephalins bind irreversibly to the opioid receptors in vitro. Recently a novel affinity reagent, Tyr-Gly-Gly-Phe-Leu-Arg-Arg-Ile-Arg-Pro-Gly chloromethyl ketone (Dynorphin(1-10)-Gly11 chloromethyl ketone, DynCMK) was synthesized, and its binding characteristics to frog (Rana esculenta)(More)
An alkylating tetrapeptide enkephalin derivative, Tyr-D-Ala-Gly-(Me)Phe-chloromethyl ketone (DAMK) was synthesized, and its binding characteristics on rat brain membranes were evaluated. In competition experiments, the product shows high affinity for the mu opioid binding site of the rat brain membranes, whereas its binding to the delta and kappa subtypes(More)
3H-D-Ala2-Leu5-enkephalin chloromethyl ketone (3H-DALECK) was used to label opioid receptors of frog brain membranes. We have previously shown (15) that 70% of the opioid receptors are of kappa type in this preparation. The binding of 3H-DALECK was of high affinity, half maximal binding being achieved by 0.9 nM of the radioligand. The number of sites(More)