Learn More
NMDA receptors play important roles in learning and memory and in sculpting neural connections during development. After the period of peak cortical plasticity, NMDA receptor-mediated EPSCs (NMDAR EPSCs) decrease in duration. A likely mechanism for this change in NMDA receptor properties is the molecular alteration of NMDA receptor structure by regulation(More)
Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1(More)
Profilin 1 is a central regulator of actin dynamics. Mutations in the gene profilin 1 (PFN1) have very recently been shown to be the cause of a subgroup of amyotrophic lateral sclerosis (ALS). Here, we performed a large screen of US, Nordic, and German familial and sporadic ALS and frontotemporal dementia (FTLD) patients for PFN1 mutations to get further(More)
Posttranslational modification of proteins by attachment of small ubiquitin-related modifier (SUMO) contributes to numerous cellular phenomena. Sumoylation sometimes creates and abolishes binding interfaces, but increasing evidence points to another role for sumoylation in promoting the solubility of aggregation-prone proteins. Using purified α-synuclein,(More)
BACKGROUND AND PURPOSE Mutations in the FUS/TLS have been associated with amyotrophic lateral sclerosis (ALS) in a few percent of patients. METHODS We screened 184 familial (FALS) and 200 sporadic German patients with ALS for FUS/TLS mutations by sequence analysis of exons 5, 6 and 13-15. We compared the phenotypes of patients with different FUS/TLS(More)
BACKGROUND A pathological hallmark of most amyotrophic lateral sclerosis (ALS) cases are intracellular aggregates of the protein TDP-43. The pathophysiological relevance of TDP-43 is underlined by familial ALS cases caused by TDP-43 mutations. TDP-43 is involved in processing of both coding RNAs and microRNAs, which are key epigenetic regulators of(More)
The GGGGCC-hexanucleotide repeat expansion in C9orf72 is the most common genetic cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. This study determined the frequency of C9orf72 repeat expansions in different motor neuron diseases (amyotrophic lateral sclerosis (ALS), motor neuron diseases affecting primarily the first or the(More)
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative diseases in which predominantly motor neurons and cerebral cortex neurons, respectively, are affected. Several novel ALS and FTD disease genes have been recently discovered, pointing toward a few overarching pathways in ALS/FTD pathogenesis. Nevertheless,(More)
In neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and prion diseases, deposits of aggregated disease-specific proteins are found. Oligomeric aggregates are presumed to be the key neurotoxic agent. Here we describe the novel oligomer modulator anle138b [3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole], an(More)
The neurotrophin brain-derived neurotrophic factor (BDNF) serves as a survival, mitogenic, and differentiation factor in both the developing and adult CNS and PNS. In an attempt to identify the molecular mechanisms underlying BDNF neuroprotection, we studied activation of two potentially neuroprotective signal transduction pathways by BDNF in a CNS trauma(More)