Jochen Gerber

Learn More
Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting(More)
Ribosome synthesis depends on nutrient availability, sensed by the target of rapamycin (TOR) signaling pathway in eukaryotes. TOR inactivation affects ribosome biogenesis at the level of rRNA gene transcription, expression of ribosomal proteins (r-proteins) and biogenesis factors, preribosome processing, and transport. Here, we demonstrate that upon TOR(More)
Several DNA cis-elements and trans-acting factors were described to be involved in transcription termination and to release the elongating RNA polymerases from their templates. Different models for the molecular mechanism of transcription termination have been suggested for eukaryotic RNA polymerase I (Pol I) from results of in vitro and in vivo(More)
Please find attached the comments from three scientists that assessed both scientific and technical merits of this interesting contribution. As you will recognize from the enclosed comments, ref#1 advices to broaden the scope of the study addressing further Trf1's recruitment/possible Reb1 competition by further experimentation. Together with necessary(More)
All nuclear RNA polymerases are phosphoprotein complexes. Yeast RNA polymerase I (Pol I) contains approximately 15 phosphate groups, distributed to 5 of the 14 subunits. Information about the function of the single phosphosites and their position in the primary, secondary and tertiary structure is lacking. We used a rapid and efficient way to purify yeast(More)
Different models have been proposed explaining how eukaryotic gene transcription is terminated. Recently, Nsi1, a factor involved in silencing of ribosomal DNA (rDNA), was shown to be required for efficient termination of rDNA transcription by RNA polymerase I (Pol I) in the yeast Saccharomyces cerevisiae. Nsi1 contains Myb-like DNA binding domains and(More)
The human genome contains four protein kinase CK2 loci, enclosing three active genes coding for the catalytic subunits α and α′ and the regulatory subunit β, and a processed α subunit pseudogene. Extensive structure and transcriptional control data of the genes are available, except for the CK2α′ gene (CSNK2A2). Using in silico and experimental approaches,(More)
The synthesis of ribosomal RNA (rRNA) precursor molecules by RNA polymerase I (Pol I) terminates with the dissociation of the protein-DNA-RNA ternary complex. Based on in vitro results the mechanism of Pol I termination appeared initially to be rather conserved and simple until this process was more thoroughly re-investigated in vivo. A picture emerged that(More)
  • 1