Jocelyn Chanussot

Learn More
In January 2006, the Data Fusion Committee of the IEEE Geoscience and Remote Sensing Society launched a public contest for pansharpening algorithms, which aimed to identify the ones that perform best. Seven research groups worldwide participated in the contest, testing eight algorithms following different philosophies [component substitution,(More)
A method is proposed for the classification of urban hyperspectral data with high spatial resolution. The approach is an extension of previous approaches and uses both the spatial and spectral information for classification. One previous approach is based on using several principal components from the hyperspectral data and building several morphological(More)
The high number of spectral bands acquired by hyperspectral sensors increases the capability to distinguish physical materials and objects, presenting new challenges to image analysis and classification. This letter presents a novel method for accurate spectral-spatial classification of hyperspectral images. The proposed technique consists of two steps. In(More)
A new spectral–spatial classification scheme for hyperspectral images is proposed. The method combines the results of a pixel wise support vector machine classification and the segmentation map obtained by partitional clustering using majority voting. The ISODATA algorithm and Gaussian mixture resolving techniques are used for image clustering. Experimental(More)
Our framework is the synthesis of multispectral images (MS) at higher spatial resolution, which should be as close as possible to those that would have been acquired by the corresponding sensors if they had this high resolution. This synthesis is performed with the help of a high spatial but low spectral resolution image: the panchromatic (Pan) image. The(More)
| Recent advances in spectral–spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive(More)
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE JUNE 2013 6 Abstract—Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of(More)
Pansharpening aims at fusing a multispectral and a panchromatic image, featuring the result of the processing with the spectral resolution of the former and the spatial resolution of the latter. In the last decades, many algorithms addressing this task have been presented in the literature. However, the lack of universally recognized evaluation criteria,(More)
Hyperspectral imaging, which records a detailed spectrum of light for each pixel, provides an invaluable source of information regarding the physical nature of the different materials, leading to the potential of a more accurate classification. However, high dimensionality of hyperspectral data, usually coupled with limited reference data available, limits(More)
Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that(More)