Learn More
Many sciences have made significant breakthroughs by adopting online tools that help organize, structure and mine information that is too detailed to be printed in journals. In this paper, we introduce OpenML, a place for machine learning researchers to share and organize data in fine detail, so that they can work more effectively, be more visible, and(More)
Research and industry increasingly make use of large amounts of data to guide decision-making. To do this, however, data needs to be analyzed in typically nontrivial refinement processes, which require technical expertise about methods and algorithms, experience with how a precise analysis should proceed, and knowledge about an exploding number of analytic(More)
Machine learning research often has a large experimental component. While the experimental methodology employed in machine learning has improved much over the years, repeatability of experiments and generalizability of results remain a concern. In this paper we propose a methodology based on the use of experiment databases. Experiment databases facilitate(More)
Identifying the best machine learning algorithm for a given problem continues to be an active area of research. In this paper we present a new method which exploits both meta-level information acquired in past experiments and active testing, an algorithm selection strategy. Active testing attempts to iteratively identify an algorithm whose performance will(More)
The behavior of many complex physical systems is affected by a variety of phenomena occurring at different temporal scales. Time series data produced by measuring properties of such systems often mirrors this fact by appearing as a composition of signals across different time scales. When the final goal of the analysis is to model the individual phenomena(More)