Learn More
ÐThis paper introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), a new search algorithm for Propositional Satisfiability (SAT). GRASP incorporates several search-pruning techniques that proved to be quite powerful on a wide variety of SAT problems. Some of these techniques are specific to SAT, whereas others are similar in spirit to(More)
This paper introduces GRASP (Generic seaRch Algorithm for the Satisfiability Problem), an integrated algorithmic framework for SAT that unifies several previously proposed search-pruning techniques and facilitates identification of additional ones. GRASP is premised on the inevitability of conflicts during search and its most distinguishing feature is the(More)
One of the main reasons for the widespread use of SAT in many applications is that Conflict-Driven Clause Learning (CDCL) Boolean Satisfiability (SAT) solvers are so effective in practice. Since their inception in the mid-90s, CDCL SAT solvers have been applied, in many cases with remarkable success, to a number of practical applications. Examples of(More)
Propositional bounded model checking has been applied successfully to verify embedded software but is limited by the increasing propositional formula size and the loss of structure during the translation. These limitations can be reduced by encoding word-level information in theories richer than propositional logic and using SMT solvers for the generated(More)
In recent years several highly effective algorithms have been proposed for Automatic Test Pattern Generation (ATPG). Nevertheless, most of these algorithms too often rely on different types of heuristics to achieve good empirical performance. Moreover there has not been significant research work on developing algorithms that are robust, in the sense that(More)
We propose two novel approaches for using Counterexample-Guided Abstraction Refinement (CEGAR) in Quantified Boolean Formula (QBF) solvers. The first approach develops a recursive algorithm whose search is driven by CEGAR (rather than by DPLL). The second approach employs CEGAR as an additional learning technique in an existing DPLL-based QBF solver.(More)
This paper addresses the interaction between randomization, with restart strategies, and learning, an often crucial technique for proving unsatisfiability. We use instances of SAT from the hardware verification domain to provide evidence that randomization can indeed be essential in solving real-world satisfiable instances of SAT. More interestingly , our(More)
A set of constraints that cannot be simultaneously satisfied is over-constrained. Minimal relaxations and minimal explanations for over-constrained problems find many practical uses. For Boolean formulas, minimal relaxations of over-constrained problems are referred to as Minimal Correction Subsets (MCSes). MCSes find many applications, including the(More)
One of the main topics of research in genomics is determining the relevance of mutations, described in haplotype data, as causes of some genetic diseases. However, due to technological limitations, genotype data rather than haplotype data is usually obtained. The haplotype inference by pure parsimony (HIPP) problem consists in inferring haplotypes from(More)