Joanne E. Nash

Learn More
Synaptic junctions are highly specialized structures designed to promote the rapid and efficient transmission of signals from the presynaptic terminal to the postsynaptic membrane within the central nervous system. Proteins containing PDZ domains play a fundamental organizational role at both the pre- and postsynaptic plasma membranes. This review focuses(More)
Dopamine-replacement strategies form the basis of most symptomatic treatments for Parkinson's disease. However, since long-term dopamine-replacement therapies are characterized by many side effects, most notably dyskinesia, the concept of a nondopaminergic therapy for Parkinson's disease has attracted great interest. To date, it has proved difficult to(More)
The interaction between GABA (gamma-aminobutyric acid) and cannabinoids in the globus pallidus was investigated by evaluating the effects of delta 9-tetrahydrocannabinol on [3H]GABA uptake into slices of rat globus pallidus. delta 9-Tetrahydrocannabinol caused a concentration-dependent decrease in GABA uptake (51% decrease at 100 microM delta(More)
Current symptomatic treatment for Parkinson's disease is based largely on dopamine-replacing agents. The fact that long-term treatment with these drugs is characterized by many side effects has lead to widespread interest in nondopaminergic therapies. To date, however, it has proved difficult to devise a nondopaminergic therapy with significant(More)
Treatments for Parkinson's disease based on replacement of lost dopamine have several problems. Following loss of dopamine, enhanced N-methyl-D-aspartate (NMDA) receptor-mediated transmission in the striatum is thought to be part of the cascade of events leading to the generation of parkinsonian symptoms. We determined the localisation and pharmacological(More)
Abnormalities in subcellular localization and interaction between receptors and their signaling molecules occur within the striatum in Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID). Synapse-associated proteins (SAPs), for example, PSD-95 and SAP97 organize the molecular architecture of synapses and regulate interactions between receptors and(More)
Following initial diagnosis of Parkinson’s disease, if it were possible to prescribe a treatment that could halt or prevent further neurodegeneration, disease progression could be prevented. The aim of this study was to generate a quick and reliable assay for assessing putative neuroprotective agents for parkinsonian patients. Abnormalities in mitochondria,(More)
Dysfunction of mitochondria, the ubiquitin proteasome system (UPS), and lysosomes are believed to contribute to the pathogenesis of Parkinson’s disease (PD). If it were possible to rescue functionally compromised, but still viable neurons early in the disease process, this would slow the rate of neurodegeneration. Here, we used a catecholaminergic(More)
Delineation of how cell death mechanisms associated with Parkinson’s disease (PD) interact and whether they converge would help identify targets for neuroprotective therapies. The purpose of this study was to use a cellular model to address these issues. Catecholaminergic SH-SY5Y neuroblastoma cells were exposed to a range of compounds (dopamine, rotenone,(More)
In Parkinson's disease (PD), degeneration of the dopaminergic nigrostriatal pathway leads to enhanced transmission at NMDA receptors containing NR2B subunits. Previous studies have shown that some, but not all, NR2B-containing NMDA receptor antagonists alleviate parkinsonian symptoms in animal models of PD. Furthermore, enhanced NMDA receptor-mediated(More)