Joanne Darragh

Learn More
The kinases MSK1 and MSK2 are activated 'downstream' of the p38 and Erk1/2 mitogen-activated protein kinases. Here we found that MSK1 and MSK2 were needed to limit the production of proinflammatory cytokines in response to stimulation of primary macrophages with lipopolysaccharide. By inducing transcription of the mitogen-activated protein kinase(More)
Although the induction of persistent behavioral alterations by drugs of abuse requires the regulation of gene transcription, the precise intracellular signaling pathways that are involved remain mainly unknown. Extracellular signal-regulated kinase (ERK) is critical for the expression of immediate-early genes in the striatum in response to cocaine and(More)
The activity of the pro-inflammatory cytokine IL (interleukin)-1 is closely regulated in vivo via a variety of mechanisms, including both the control of IL-1 production and secretion as well as naturally occurring inhibitors of IL-1 function, such as IL-1ra (IL-1 receptor antagonist). IL-1ra is homologous with IL-1, and is able to bind but not activate the(More)
p38 mitogen-activated protein kinases (MAPKs) are activated primarily in response to inflammatory cytokines and cellular stress, and inhibitors which target the p38alpha and p38beta MAPKs have shown potential for the treatment of inflammatory disease. Here we report the generation and initial characterization of a knockout of the p38beta (MAPK11) gene.(More)
Psoriasis is an inflammatory skin disease characterized by infiltration of the skin by T cells and increased production of pro-inflammatory cytokines. Two recent reports show that the p38-activated kinases mitogen-activated protein kinase-activated protein kinase 2 and mitogen- and stress-activated protein kinase are activated in psoriatic skin and may(More)
MSK (mitogen- and stress-activated protein kinase) 1 and MSK2 are kinases activated downstream of either the ERK (extracellular-signal-regulated kinase) 1/2 or p38 MAPK (mitogen-activated protein kinase) pathways in vivo and are required for the phosphorylation of CREB (cAMP response element-binding protein) and histone H3. Here we show that the MSKs are(More)
Stress protein responses have evolved in part as a mechanism to protect cells from the toxic effects of environmental damaging agents. Oesophageal squamous epithelial cells have evolved an atypical stress response that results in the synthesis of a 53 kDa protein of undefined function named squamous epithelial-induced stress protein of 53 kDa (SEP53). Given(More)
MSK1 (mitogen- and stress-activated kinase 1) and MSK2 are nuclear protein kinases that regulate transcription downstream of the ERK1/2 (extracellular-signal-regulated kinase 1/2) and p38α MAPKs (mitogen-activated protein kinases) via the phosphorylation of CREB (cAMP-response-element-binding protein) and histone H3. Previous studies on the function of MSKs(More)