Learn More
Production of extracellular proteins plays an important role in the physiology of Trichoderma reesei and has potential industrial application. To improve the efficiency of protein secretion, we overexpressed in T. reesei the DPM1 gene of Saccharomyces cerevisiae, encoding mannosylphosphodolichol (MPD) synthase, under homologous, constitutively acting(More)
Mutations in the cysB, sconB and sconC genes affect sulfur metabolism in Aspergillus nidulans in different ways. The cysB mutation blocks synthesis of cysteine by the main pathway and leads to a shortage of this amino acid. The sconB and sconC mutations affect subunits of the SCF ubiquitin ligase complex, which inactivates the MetR transcription factor in(More)
In fungi, transfer of the first mannosyl residue to proteins during their O-glycosylation is catalyzed by protein O-mannosyltransferases. Integration of additional copies of the pmt1 gene into Trichoderma reesei genome unexpectedly resulted in the silencing of pmt1 expression. Strains carrying the additional copies of pmt1 gene exhibited lower total(More)
Dolichol phosphate mannose (DPM) synthase activity, which is required in N:-glycosylation, O-mannosylation, and glycosylphosphatidylinositol membrane anchoring of protein, has been postulated to regulate the Trichoderma reesei secretory pathway. We have cloned a T.reesei cDNA that encodes a 243 amino acid protein whose amino acid sequence shows 67% and 65%(More)
BACKGROUND Dolichol phosphate mannose synthase (DPMS) is a key enzyme in N- and O-linked glycosylations and glycosylphosphatidylinositol (GPI)-anchor synthesis. DPMS generates DPM, the substrate for mentioned processes, by the transfer of mannosyl residue from GDP-Man to dolichol phosphate. Here we describe the role of DPMS for Candida albicans physiology(More)
Due to its natural properties, Trichoderma reesei is commonly used in industry-scale production of secretory proteins. Since almost all secreted proteins are O-glycosylated, modulation of the activity of enzymes of the O-glycosylation pathway are likely to affect protein production and secretion or change the glycosylation pattern of the secreted proteins,(More)
To elucidate the regulation and limiting factors in the glycosylation of secreted proteins, the mpg1 and dpm1 genes from Trichoderma reesei (Hypocrea jecorina) encoding GTP:alpha-D-mannose-1-phosphate guanyltransferase and dolichyl phosphate mannose synthase (DPMS), respectively, were overexpressed in T. reesei. No significant increases were observed in(More)
O-Mannosylation is suggested to be essential for protein secretion in Trichoderma reesei. In protein O-glycosylation, the first mannosyl residue is transferred to a serine or threonine hydroxyl group of the protein from dolichyl phosphate mannose by protein O-mannosyltransferase. In Saccharomyces cerevisiae, seven PMT genes have been cloned coding for these(More)
Isolation of some biologically important proteins from natural sources was found to be too expensive or scarcely possible (human proteins). The problem could be solved by expression of heterologous genes. Many biologically active proteins have been successfully expressed in filamentous fungi, some of them, however, at a low level. Thus, improvement of this(More)
Mannosylphosphodolichol synthase (MPD-synthase) (EC catalyzing formation of MPD from GDPMan and dolichylphosphate (PD) has been purified from T. reesei cellular membranes almost to homogeneity. Selective solubilization of the enzyme was followed by one step purification on Phenyl-Sepharose column. SDS/ PAGE of the purified enzyme fraction(More)