Joanna Rawling

Learn More
Cell entry by paramyxoviruses requires fusion between viral and cellular membranes. Paramyxovirus infection also gives rise to the formation of multinuclear, fused cells (syncytia). Both types of fusion are mediated by the viral fusion (F) protein, which requires proteolytic processing at a basic cleavage site in order to be active for fusion. In common(More)
Cell entry by paramyxoviruses requires fusion of the viral envelope with the target cell membrane. Fusion is mediated by the viral fusion (F) glycoprotein and usually requires the aid of the attachment glycoprotein (G, H or HN, depending on the virus). Human respiratory syncytial virus F protein (F(RSV)) is able to mediate membrane fusion in the absence of(More)
The soluble (Gs) and membrane-bound (Gm) forms of human respiratory syncytial virus (HRSV) attachment protein were purified by immunoaffinity chromatography from cultures of HEp-2 cells infected with vaccinia virus recombinants expressing either protein. Sucrose gradient centrifugation indicated that Gs, which is secreted into the culture medium, remains(More)
The influence of viral envelope glycans is often overlooked, but one should bear in mind that variable glycosylation may affect the properties of viral envelope glycoproteins and potentially alter the course of an infection. Hence, there is a need for simple methods that can be use to identify changes in the glycosylation pattern of viral glycoproteins in a(More)
Dune formation on late Holocene sandy bay barriers along Lake Michigan's Door Peninsula: The importance of increased sediment supply following the Nipissing and Algoma high lake-level phases" (2014). Abstract This study focuses on the geomorphology and geochronology of dunes formed on three sandy barrier systems at Clark, Europe and Kangaroo Lakes in(More)
  • 1