Joanna F Swain

Learn More
Hsp70 chaperones assist in protein folding, disaggregation, and membrane translocation by binding to substrate proteins with an ATP-regulated affinity that relies on allosteric coupling between ATP-binding and substrate-binding domains. We have studied single- and two-domain versions of the E. coli Hsp70, DnaK, to explore the mechanism of interdomain(More)
Allosteric coupling between protein domains is fundamental to many cellular processes. For example, Hsp70 molecular chaperones use ATP binding by their actin-like N-terminal ATPase domain to control substrate interactions in their C-terminal substrate-binding domain, a reaction that is critical for protein folding in cells. Here, we generalize the(More)
It is becoming increasingly clear that the fundamental capacity to undergo conformational change in response to ligand binding is intrinsic to proteins. This property confers on proteins the ability to be allosterically modulated in order to shift substrate binding affinities, alter enzymatic activity or regulate protein-protein interaction. How this(More)
The Hsp70 family of molecular chaperones acts to prevent protein misfolding, import proteins into organelles, unravel protein aggregates, and enhance cell survival under stress conditions. These activities are all mediated by recognition of diverse hydrophobic sequences via a C-terminal substrate-binding domain. ATP-binding/hydrolysis by the N-terminal(More)
SecA, a 204-kDa homodimeric protein, is a major component of the cellular machinery that mediates the translocation of proteins across the Escherichia coli plasma membrane. SecA promotes translocation by nucleotide-modulated insertion and deinsertion into the cytoplasmic membrane once bound to both the signal sequence and portions of the mature domain of(More)
N-terminal signal sequences can direct nascent protein chains to the inner membrane of prokaryotes and the endoplasmic reticulum of eukaryotes by interacting with the signal recognition particle. In this study, we show that isolated peptides corresponding to several bacterial signal sequences inhibit the GTPase activity of the Escherichia coli signal(More)
Members of the Hsp70 (heat-shock protein of 70 kDa) family of molecular chaperones bind to exposed hydrophobic stretches on substrate proteins in order to dissociate molecular complexes and prevent aggregation in the cell. Substrate affinity for the C-terminal domain of the Hsp70 is regulated by ATP binding to the N-terminal domain utilizing an allosteric(More)
  • 1