Learn More
The ionotropic glutamate receptor (iGluR) gene family has been widely studied in animals and is determined to be important in excitatory neurotransmission and other neuronal processes. We have previously identified ionotropic glutamate receptor-like genes (GLRs) in Arabidopsis thaliana, an organism that lacks a nervous system. Upon the completion of the(More)
MOTIVATION The determination of gene orthology is a prerequisite for mining and utilizing the rapidly increasing amount of sequence data for genome-scale phylogenetics and comparative genomic studies. Until now, most researchers use pairwise distance comparisons algorithms, such as BLAST, COG, RBH, RSD and INPARANOID, to determine gene orthology. In(More)
Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100(More)
A novel result of the current research is the development and implementation of a unique functional phylogenomic approach that explores the genomic origins of seed plant diversification. We first use 22,833 sets of orthologs from the nuclear genomes of 101 genera across land plants to reconstruct their phylogenetic relationships. One of the more salient(More)
Eusocial behavior has arisen in few animal groups, most notably in the aculeate Hymenoptera, a clade comprising ants, bees, and stinging wasps [1-4]. Phylogeny is crucial to understanding the evolution of the salient features of these insects, including eusociality [5]. Yet the phylogenetic relationships among the major lineages of aculeate Hymenoptera(More)
The daily timing of when PERIOD (PER) proteins translocate from the cytoplasm to the nucleus is a critical step in clock mechanisms underpinning circadian rhythms in animals. Numerous lines of evidence indicate that phosphorylation plays a prominent role in regulating various aspects of PER function and metabolism, including changes in its daily stability(More)
A common feature of animal circadian clocks is the progressive phosphorylation of PERIOD (PER) proteins, which is highly dependent on casein kinase Idelta/epsilon (CKIdelta/epsilon; termed DOUBLETIME [DBT] in Drosophila) and ultimately leads to the rapid degradation of hyperphosphorylated isoforms via a mechanism involving the F-box protein, beta-TrCP(More)
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we(More)
Whether coding or regulatory sequence change is more important to the evolution of phenotypic novelty is one of biology's major unresolved questions. The field of evo-devo has shown that in early development changes to regulatory regions are the dominant mode of genetic change, but whether this extends to the evolution of novel phenotypes in the adult(More)
As global climate change and exponential human population growth intensifies pressure on agricultural systems, the need to effectively manage invasive insect pests is becoming increasingly important to global food security. Drosophila suzukii is an invasive pest that drastically expanded its global range in a very short time since 2008, spreading to most(More)