Joan Torrent

Learn More
Accumulation of PrP(Sc), an abnormal form of cellular prion protein (PrP), in the brain of animals and humans leads to fatal neurodegenerative disorders known as prion diseases. Limited protease digestion of PrP(Sc) produces a truncated form called PrP(27-30) that retains prion infectivity and is the main marker of disease targeted in most diagnostic tests.(More)
Prion proteins (PrP) can aggregate into toxic and possibly infectious amyloid fibrils. This particular macrostructure confers on them an extreme and still unexplained stability. To provide mechanistic insights into this self-assembly process, we used high pressure as a thermodynamic tool for perturbing the structure of mature amyloid fibrils that were(More)
The Internet has become one of the main drivers of e-health. Whilst its impact and potential is being analysed, the Web 2.0 phenomenon has reached the health field and has emerged as a buzzword that people use to describe a wide range of online activities and applications. The aims of this article are: to explore the opportunities and challenges of the Web(More)
At high temperature, recombinant hamster prion protein (SHaPrP(90-231)) undergoes aggregation and changes from a predominantly alpha-helical to beta-sheet conformation. We then applied high pressure (200 MPa) to the beta-sheet-rich conformation. The aggregation was reversed, and the original tertiary and secondary structures were recovered at ambient(More)
Our understanding of conformational conversion of proteins in diseases is essential for any diagnostic and therapeutic approach. Although not fully understood, misfolding of the prion protein (PrP) is implicated in the pathogenesis of prion diseases. Despite several efforts to produce the pathologically misfolded conformation in vitro from a recombinant(More)
The phenomenon of protein superstructural polymorphism has become the subject of increased research activity. Besides the relevance to explain the existence of multiple prion strains, such activity is partly driven by the recent finding that in many age-related neurodegenerative diseases highly ordered self-associated forms of peptides and proteins might be(More)
Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrPSc. Aggregation of PrPSc into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion(More)
INTRODUCTION The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases RESULTS Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association(More)
Protein oligomerization has been associated with a wide range of diseases. High pressure approaches offer a powerful tool for deciphering the underlying molecular mechanisms by revealing volume changes associated with the misfolding and assembly reactions. We applied high pressure to induce conformational changes in three distinct β-sheet-rich oligomers of(More)
Neurodegenerative protein misfolding diseases, including prionopathies, share the common feature of accumulating specific misfolded proteins, with a molecular mechanism closely related. Misfolded prion protein (PrP) generates soluble oligomers that, in turn, aggregate into amyloid fibers. Preventing the formation of these entities, crucially associated with(More)