Joan T. Richtsmeier

Kristina Aldridge12
Neus Martínez-Abadías7
12Kristina Aldridge
7Neus Martínez-Abadías
Learn More
Down syndrome (DS) results from inheritance of three copies of human chromosome 21 (Hsa21). Individuals with DS have a significantly smaller brain size overall and a disproportionately small cerebellum. The small cerebellum is seen in Ts65Dn mice, which have segmental trisomy for orthologs of about half the genes on Hsa21 and provide a genetic model for DS.(More)
Nontraditional or geometric morphometric methods have found wide application in the biological sciences, especially in anthropology, a field with a strong history of measurement of biological form. Controversy has arisen over which method is the "best" for quantifying the morphological difference between forms and for making proper statistical statements(More)
The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic(More)
The brain originates relatively early in development from differentiated ectoderm that forms a hollow tube and takes on an exceedingly complex shape with development. The skull is made up of individual bony elements that form from neural crest- and mesoderm-derived mesenchyme that unite to provide support and protection for soft tissues and spaces of the(More)
Though reduction in the number of cranial elements through loss of a suture is a recognized trend in vertebrate evolution, the premature closure of cranial sutures in humans, craniosynostosis, is considered a pathological condition. Previous research on craniosynostosis has focused primarily on the skeletal phenotype, but the intimate relationship between(More)
Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues(More)
We recorded 3D coordinates for 28 mandibular landmarks from three-dimensional reconstructions of CT axial slices using the image analysis program eTDIPS. The images were acquired from a pediatric series of human mandibles (neonate to 13 years of age) from the Bosma collection (Shapiro and Richtsmeier, 1997, Am. J. Phys. Anthropol. 103:415-416). To test the(More)
In this paper, we first introduce a 3D morphing method for landmark-based volume deformation, using various scattered data interpolation schemes. Qualitative and speed comparisons are also made for different interpolation schemes. To efficiently render the volume morphing process, a new deformable volume rendering algorithm is presented. The algorithm(More)
The human skull is a complex and highly integrated structure that has long held the fascination of anthropologists and evolutionary biologists. Recent studies of the genetics of craniofacial variation reveal a very complex and multifactorial picture. These findings contrast with older ideas that posit much simpler developmental bases for variation in(More)
BACKGROUND Apert syndrome is characterized by craniosynostosis and limb abnormalities and is primarily caused by FGFR2 +/P253R and +/S252W mutations. The former mutation is present in approximately one third whereas the latter mutation is present in two-thirds of the patients with this condition. We previously reported an inbred transgenic mouse model with(More)