Learn More
Image segmentation has been, and still is, a relevant research area in Computer Vision, and hundreds of segmentation algorithms have been proposed in the last 30 years. However, it is well known that elemental segmentation techniques based on boundary or region information often fail to produce accurate segmentation results. Hence, in the last few years,(More)
A colour texture segmentation method which unifies region and boundary information is presented in this paper. The fusion of several approaches which integrate both information sources allows us to exploit the benefits of each one. We propose a segmentation method which uses a coarse detection of the perceptual (colour and texture) edges of the image to(More)
The aim of this paper is to review existing approaches to the automatic detection and segmentation of masses in mammographic images, highlighting the key-points and main differences between the used strategies. The key objective is to point out the advantages and disadvantages of the various approaches. In contrast with other reviews which only describe and(More)
Previous works on breast tissue identification and abnormalities detection notice that the feature extraction process is affected if the region processed is not well focused. Thereby, it is important to split the mammogram into interesting regions to achieve optimal breast parenchyma measurements, breast registration or to put into focus a technique when we(More)
During the last decade several algorithms have been proposed for automatic mass detection in mammographic images. However, almost all these methods suffer from a high number of false positives. In this paper we propose a new approach for tackling this false positive reduction problem. The key point of our proposal is the use of Local Binary Patterns (LBP)(More)
In this paper we propose a new approach for false positive reduction in the field of mammographic mass detection. The goal is to distinguish between the true recognized masses and the ones which actually are normal parenchyma. Our proposal is based on Local Binary Patterns (LBP) for representing salient micro-patterns and preserving at the same time the(More)
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic(More)
A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face(More)
We study the information ‡ows that arise within an organization with local knowledge and payo¤ externalities. Our organization is modeled as a network game played by agents with asymmetric information. Before making decisions, agents can invest in pairwise communication. Both active communication (speaking) and passive communication (listening) are costly.(More)
We study the information ‡ows that arise among a set of agents with local knowledge and directed payo¤ interactions, which di¤er among pairs of agents. First, we study the equilibrium of a game where, before making decisions, agents can invest in pairwise active communication (speaking) and pairwise passive communication (listening). This leads to a full(More)