Joan Keutzer

Learn More
OBJECTIVE Pompe disease is an autosomal recessive lysosomal storage disorder that is caused by deficient acid alpha-glucosidase activity and results in progressive, debilitating, and often life-threatening symptoms involving the musculoskeletal, respiratory, and cardiac systems. Recently, enzyme replacement therapy with alglucosidase alpha has become(More)
BACKGROUND Reports of the use of multiplex enzyme assay screening for Pompe disease, Fabry disease, Gaucher disease, Niemann-Pick disease types A and B, and Krabbe disease have engendered interest in the use of this assay in newborn screening. We modified the assay for high-throughput use in screening laboratories. METHODS We optimized enzyme reaction(More)
In nonneuronopathic type 1 Gaucher disease (GD1), mutations in the glucocerebrosidase gene (GBA1) gene result in glucocerebrosidase deficiency and the accumulation of its substrate, glucocerebroside (GL-1), in the lysosomes of mononuclear phagocytes. This prevailing macrophage-centric view, however, does not explain emerging aspects of the disease,(More)
BACKGROUND Pompe disease, caused by the deficiency of acid alpha-glucosidase (GAA), is a lysosomal storage disorder that manifests itself in its most severe form within the first months of life. Early detection by newborn screening is warranted, since prompt initiation of enzyme replacement therapy may improve morbidity and mortality. We evaluated a tandem(More)
Pompe disease is an autosomal recessive lysosomal storage disorder (LSD) caused by deficiency of lysosomal acid alpha-glucosidase (GAA) activity. This is the first LSD in which newborn screening has been shown to improve clinical outcomes. Newborn screening also identified multiple rare gene variants in this population. Among 132,538 newborns screened, 107(More)
BACKGROUND Lysosomal storage disorders (LSDs) are pathologies caused by the deficit of lysosomal enzymes; late diagnosis may render therapeutic programs less effective. As early, pre-symptomatic detection could change the natural history of the disease, we are setting up rapid microassays using dried blood spots (DBS) on filter paper. Here we report(More)
The enzymatic defect in Pompe disease is insufficient lysosomal acid alpha-glucosidase (GAA) activity which leads to lysosomal glycogen accumulation. We recently introduced a simple and reliable method to measure GAA activity in dried blood spots using Acarbose, a highly selective alpha-glucosidase inhibitor, to eliminate isoenzyme interference. Here we(More)
Niemann-Pick disease type B (NPD-B) is caused by a partial deficiency of acid sphingomyelinase activity and results in the accumulation of lysosomal sphingomyelin (SPM) predominantly in macrophages. Notably, SPM is not significantly elevated in the plasma, whole blood, or urine of NPD-B patients. Here, we show that the de-acylated form of sphingomyelin,(More)
Pompe disease is an autosomal recessive disorder of glycogen metabolism caused by a deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). It presents at any age, with variable rates of progression ranging from a rapidly progressive course, often fatal by one-year of age, to a more slowly, but nevertheless relentlessly progressive course,(More)
Fabry disease is an X-linked sphingolipidosis due to a deficiency of alpha-galactosidase A, which leads to the accumulation of globotriaosylceramide (GL-3) in several organs. When recombinant human alpha-galactosidase A is intravenously administered repeatedly before the patient develops permanent tissue damage, there is evidence that the accumulation of(More)