Learn More
As the number of cores increases in both incoming and future chip multiprocessors, coherence protocols must address novel hardware structures in order to scale in terms of performance, power, and area. It is well known that most blocks accessed by parallel applications are private (i.e., accessed by a single core). These blocks present different directory(More)
Power consumption has become a major design concern in current high-performance chip multiprocessors, and this problem exacerbates with the number of core counts. A significant fraction of the total power budget is often consumed by on-chip caches, thus important research has focused on reducing energy consumption in these structures. To enhance(More)
As the number of cores increases in current and future chip-multiprocessor (CMP) generations, coherence protocols must rely on novel hardware structures to scale in terms of performance, power, and area. Systems that use directory information for coherence purposes are currently the most scalable alternative. This paper studies the important differences(More)
As the core counts increase in each chip multiprocessor generation, coherence protocols should improve scalability inperformance, area, and energy consumption to meet the demandsof larger core counts. Directory-based protocols constitute themost scalable alternative. A conventional directory, however, suffers from an inefficient use of storage and energy.(More)
Power consumption in current high-performance chip multiprocessors (CMPs) has become a major design concern. The current trend of increasing the core count aggravates this problem. On-chip caches consume a significant fraction of the total power budget. Most of the proposed techniques to reduce the energy consumption of these memory structures are at the(More)
  • 1