Learn More
Sarcopenia is the drastic loss of skeletal muscle mass and strength during ageing. In order to better understand the molecular pathogenesis of age-related muscle wasting, we have performed a DIGE analysis of young adult versus old rat skeletal muscle. Proteomic profiling revealed that out of 2493 separated 2-D spots, 69 proteins exhibited a drastically(More)
Extended human longevity has resulted in increasing numbers of elderly persons in the general population. However, old age is also associated with a variety of serious physical disorders. Frailty among sedentary elderly patients is related to the impaired structure and function of contractile fibers. Biochemical research into cellular mechanisms that(More)
One of the most important post-translational modifications is represented by phosphorylation on tyrosine, threonine and serine residues. Since abnormal phosphorylation is associated with various pathologies, it was of interest to perform a phosphoproteomic profiling of age-related skeletal muscle degeneration. We used the fluorescent phospho-specific Pro-Q(More)
Extended longevity is often accompanied by frailty and increased susceptibility to a variety of crippling disorders. One of the most striking features of human aging is sarcopenia, which is defined as the age-related decline in skeletal muscle mass and strength. Although various metabolic and functional defects in aging muscle fibres have been described(More)
In skeletal muscle, Ca(2+)-cycling through the sarcoplasm regulates the excitation-contraction-relaxation cycle. Since uncoupling between sarcolemmal excitation and fibre contraction may play a key role in the functional decline of aged muscle, this study has evaluated the expression levels of key Ca(2+)-handling proteins in senescent preparations using(More)
Most heat shock proteins operate as molecular chaperones and play a central role in the maintenance of normal cellular function. In skeletal muscle, members of the alpha-crystallin domain-containing family of small heat shock proteins are believed to form a cohort of essential stress proteins. Since alphaB-crystallin (alphaBC/HspB5) and the cardiovascular(More)
Over the last few decades of biomedical research, animal models of neuromuscular diseases have been widely used for determining pathological mechanisms and for testing new therapeutic strategies. With the emergence of high-throughput proteomics technology, the identification of novel protein factors involved in disease processes has been decisively(More)
In contrast to the traditional biochemical study of single proteins or isolated pathways in health and disease, technical advances in the high-throughput screening of peptides by mass spectrometry have established new ways of identifying entire cellular protein populations in one swift analytical approach. This review discusses the recent progress in the(More)
The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that(More)
Since various neuromuscular diseases are associated with abnormal glycosylation, it was of interest to determine whether this key post-translational modification is also altered in aged skeletal muscle. Lectins represent highly versatile carbohydrate-binding proteins that are routinely employed for the characterization of glycoproteins. Here, we used the(More)