Joan D. Ferraris

Learn More
The nuclear factor of activated T cells 5 (NFAT5 or TonEBP) is a Rel family transcriptional activator and is activated by hypertonic conditions. Several studies point to a possible connection between nuclear translocation and DNA binding; however, the mechanism of NFAT5 nuclear translocation and the effect of DNA binding on retaining NFAT5 in the nucleus(More)
BACKGROUND Hypertonicity, such as induced by high NaCl, increases the activity of the transcription factor TonEBP/OREBP whose target genes increase osmoprotective organic osmolytes and heat shock proteins. METHODOLOGY We used mass spectrometry to analyze proteins that coimmunoprecipitate with TonEBP/OREBP in order to identify ones that might contribute to(More)
When activated by high NaCl, tonicity-responsive enhancer-binding protein/osmotic response element-binding protein (TonEBP/OREBP) increases transcription of osmoprotective genes. High NaCl activates TonEBP/OREBP by increasing its phosphorylation, nuclear localization, and transactivating activity. In HEK293 cells, mass spectrometry shows phosphorylation of(More)
Having previously found that high NaCl causes rapid exit of 14-3-3 isoforms from the nucleus, we used siRNA-mediated knockdown to test whether 14-3-3s contribute to the high NaCl-induced increase in the activity of the osmo-protective transcription factor NFAT5. We find that, when NaCl is elevated, knockdown of 14-3-3-b and/or 14-3-3-e decreases NFAT5(More)
Biological information, even in highly specialized fields, is increasing at a volume that no single investigator can assimilate. The existence of this vast knowledge base creates the need for specialized computer databases to store and selectively sort the information. We have developed a manually curated database of the effects of hypertonicity on target(More)
  • 1