Learn More
Regulation of neuronal gene expression is critical to central nervous system development. Here, we show that REST regulates the transitions from pluripotent to neural stem/progenitor cell and from progenitor to mature neuron. In the transition to progenitor cell, REST is degraded to levels just sufficient to maintain neuronal gene chromatin in an inactive(More)
The circadian timing system imposes a temporal organization on physiological processes and behavior. The two major nuclei of the system are the intergeniculate leaflet (IGL) of the lateral geniculate complex and the suprachiasmatic nucleus (SCN) of the hypothalamus. In this study, we demonstrate that neurons of both nuclei colocalize GABA with peptides. In(More)
The suprachiasmatic nucleus (SCN) of the hypothalamus is a dominant circadian pacemaker in the mammalian brain controlling the rest-activity cycle and a series of physiological and endocrine functions to provide a foundation for the successful elaboration of adaptive sleep and waking behavior. The SCN is anatomically and functionally organized into two(More)
The retinal ganglion cells giving rise to retinohypothalamic projections in the rat were identified using retrograde transport of horseradish peroxidase (HRP) or FluoroGold injected into the suprachiasmatic nucleus (SCN), and using transneuronal transport of the Bartha strain of the swine herpesvirus (PRV-Bartha). When PRV-Bartha is injected into one eye,(More)
The repressor REST/NRSF restricts expression of a large set of genes to neurons by suppressing their expression in non-neural tissues. We find that REST repression involves two distinct repressor proteins. One of these, CoREST, interacts with the COOH-terminal repressor domain of REST (Andres, M. E., Burger, C., Peral-Rubio, M. J., Battaglioli, E.,(More)
The development of the retinohypothalamic tract (RHT) in the albino rat and golden hamster was studied using anterograde transport of cholera toxin conjugated to horseradish peroxidase (CT-HRP). The RHT has three components in the adult: (1) a dense projection to the ventrolateral subdivision of the suprachiasmatic nucleus (SCN) with some fibers extending(More)
The suprachiasmatic nucleus (SCN) in rodents receives a dense innervation from serotonin neurons of the midbrain raphe. This projection overlaps the terminal field of the retinohypothalamic tract in the SCN core, the central part of the nucleus characterized by a population of vasoactive intestinal polypeptide (VIP)-containing neurons. To determine whether(More)
A detailed analysis of the cytoarchitecture, retinohypothalamic tract (RHT) projections, and immunohistochemical localization of major cell and fiber types within the hypothalamic suprachiasmatic nuclei (SCN) was conducted in five mammalian species: two species of opossum, the domestic cat, the guinea pig, and the house mouse. Cytoarchitectural and(More)
The distribution of neuropeptide Y-immunoreactive (NPY-IR) perikarya, fibers, and terminals was investigated in the brain of two species of hibernatory ground squirrels, Spermophilus tridecemlineatus and S. richardsonii, by means of immunohistochemistry. In the telencephalic and diencephalic structures studied, distinct patterns of NPY-IR were observed(More)
The development of the suprachiasmatic nucleus (SCN) in fetal rat hypothalamus transplanted to the adult brain was studied using morphological and functional methods. Anterior hypothalamic tissue was transplanted into the third ventricle, lateral ventricle or subarachnoid space of intact, adult hosts from E17 fetuses. These transplants developed the(More)