Joan C. Marini

Learn More
Osteogenesis imperfecta (OI) is a generalized disorder of connective tissue characterized by fragile bones and easy susceptibility to fracture. Most cases of OI are caused by mutations in type I collagen. We have identified and assembled structural mutations in type I collagen genes (COL1A1 and COL1A2, encoding the proalpha1(I) and proalpha2(I) chains,(More)
A recessive form of severe osteogenesis imperfecta that is not caused by mutations in type I collagen has long been suspected. Mutations in human CRTAP (cartilage-associated protein) causing recessive bone disease have been reported. CRTAP forms a complex with cyclophilin B and prolyl 3-hydroxylase 1, which is encoded by LEPRE1 and hydroxylates one residue(More)
A new paradigm has emerged for osteogenesis imperfecta as a collagen-related disorder. The more prevalent autosomal dominant forms of osteogenesis imperfecta are caused by primary defects in type I collagen, whereas autosomal recessive forms are caused by deficiency of proteins which interact with type I procollagen for post-translational modification(More)
In this study we provide further evidence associating activated cells of the monocyte lineage with the lesions of multiple sclerosis (MS). Using a combination of immunohistochemistry and reverse transcriptase-dependent in situ polymerase chain reaction analysis, we have identified monocytes expressing inducible nitric oxide synthase (iNOS) to be prevalent(More)
Classic osteogenesis imperfecta, an autosomal dominant disorder associated with osteoporosis and bone fragility, is caused by mutations in the genes for type I collagen. A recessive form of the disorder has long been suspected. Since the loss of cartilage-associated protein (CRTAP), which is required for post-translational prolyl 3-hydroxylation of(More)
OBJECTIVE To evaluate the relationship between biomarker levels and disease activity and the spinal inflammation detected by magnetic resonance imaging (MRI) in patients with ankylosing spondylitis (AS). METHODS Patients with AS were randomly assigned in a 3:8 ratio to receive infusions of placebo or 5 mg/kg infliximab at weeks 0, 2, 6, 12 and 18. Sera(More)
Osteogenesis imperfecta is a heritable disorder that causes bone fragility. Mutations in type I collagen result in autosomal dominant osteogenesis imperfecta, whereas mutations in either of two components of the collagen prolyl 3-hydroxylation complex (cartilage-associated protein [CRTAP] and prolyl 3-hydroxylase 1 [P3H1]) cause autosomal recessive(More)
We have investigated the unusual physical properties of a restriction fragment of Leishmania tarentolae kinetoplast DNA. A gel-purified fragment comprising slightly more than half of a minicircle was determined by Maxam-Gilbert sequence determination to be 490 base pairs (bp) in length. This fragment has dramatically anomalous electrophoretic behavior; it(More)
Type I collagen, the predominant protein of vertebrates, polymerizes with type III and V collagens and non-collagenous molecules into large cable-like fibrils, yet how the fibril interacts with cells and other binding partners remains poorly understood. To help reveal insights into the collagen structure-function relationship, a data base was assembled(More)
We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation.(More)