Joakim Lindblad

Learn More
Automatic cell segmentation has various applications in cytometry, and while the nucleus is often very distinct and easy to identify, the cytoplasm provides a lot more challenge. A new combination of image analysis algorithms for segmentation of cells imaged by fluorescence microscopy is presented. The algorithm consists of an image pre-processing step, a(More)
Lindblad J. 2003. Development of Algorithms for Digital Image Cytometry. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 789. 67 pp. Uppsala. ISBN 91-554-5497-6. This thesis presents work in digital image cytometry applied to fluorescence microscope images of cultivated cells. Focus(More)
Cancer diagnosis is based on visual examination under a microscope of tissue sections from biopsies. But whereas pathologists rely on tissue stains to identify morphological features, automated tissue recognition using color is fraught with problems that stem from image intensity variations due to variations in tissue preparation, variations in spectral(More)
BACKGROUND Rac1 is a GTP-binding molecule involved in a wide range of cellular processes. Using digital image analysis, agonist-induced translocation of green fluorescent protein (GFP) Rac1 to the cellular membrane can be estimated quantitatively for individual cells. METHODS A fully automatic image analysis method for cell segmentation, feature(More)
We present a novel method that provides an accurate and precise estimate of the length of the boundary (perimeter) of an object by taking into account gray levels on the boundary of the digitization of the same object. Assuming a model where pixel intensity is proportional to the coverage of a pixel, we show that the presented method provides error-free(More)
The skeletal muscle fibre is a syncitium where each myonucleus regulates the gene products in a finite volume of the cytoplasm, i.e., the myonuclear domain (MND). We analysed aging- and gender-related effects on myonuclei organization and the MND size in single muscle fibres from six young (21-31 years) and nine old men (72-96 years), and from six young(More)