Joakim Håkansson

Learn More
Dramatic increase in bacterial resistance towards conventional antibiotics emphasises the importance to identify novel, more potent antimicrobial therapies. Antimicrobial peptides (AMPs) have emerged as a promising new group to be evaluated in therapeutic intervention of infectious diseases. Here we describe a novel AMP, PXL150, which demonstrates in vitro(More)
PURPOSE Restoration of digital function after flexor tendon injuries remains a clinical challenge. Complications such as adhesion formation and tendon rupture can lead to limited hand function. The aim of this study was to compare the effects of the lactoferrin-derived peptide, PXL01, formulated in sodium hyaluronate (SH), with SH alone on joint mobility as(More)
Bacterial resistance against antibiotic treatment has become a major threat to public health. Antimicrobial peptides (AMPs) have emerged as promising alternative agents for treatment of infectious diseases. This study characterizes novel synthetic peptides sequentially derived from the AMP centrocin 1, isolated from the green sea urchin, for their(More)
Antimicrobial peptides have recently emerged as a promising new group to be evaluated in the therapeutic intervention of infectious diseases. This study evaluated the anti-infectious effect of the short, synthetic, broad-spectrum antimicrobial peptide PXL150 in a mouse model of staphylococcal surgical site infections. We found that administration of PXL150,(More)
The urgent need to develop novel antimicrobial therapies has stimulated interest in antimicrobial peptides as therapeutic candidates for the treatment of infectious diseases. The aim of this study was to evaluate the anti-infectious effect of the synthetic antimicrobial peptide PXL150, formulated in hydroxypropyl cellulose (HPC) gel, on Pseudomonas(More)
Repair of a transected flexor tendon will, despite careful technique and early rehabilitation, usually result in a restricted range of movement. This is mainly because adhesions form between the tendon and the surrounding structures. Our aim was to establish an experimental model in rabbits for future studies on new techniques to reduce the formation of(More)
Antimicrobial peptides (AMPs) have emerged as a new class of drug candidates for the treatment of infectious diseases. Here we describe a novel AMP, HLR1r, which is structurally derived from the human milk protein lactoferrin and demonstrates a broad spectrum microbicidal action in vitro. The minimum concentration of HLR1r needed for killing ≥99% of(More)
Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly(More)
  • 1