Joachim Wiest

Learn More
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently(More)
GOAL This contribution points out the need for well-defined and documented data processing protocols in microphysiometry, an evolving field of label-free cell assays. The sensitivity of the obtained cell metabolic rates toward different routines of raw data processing is evaluated. METHODS A standard microphysiometric experiment structured in discrete(More)
Understanding the effect of exogenous substances on human skin is critical for toxicology assessment. To address this, numerous artificial models of the topmost layer of human skin, so-called reconstructed human epidermis (RhE), have been created in an attempt to produce a clear analogue for testing. Unfortunately, current testing modalities still rely on(More)
Screening a newly developed drug, food additive or cosmetic ingredient for toxicity is a critical preliminary step before it can move forward in the development pipeline. Due to the sometimes dire consequences when a harmful agent is overlooked, toxicologists work under strict guidelines to effectively catalogue and classify new chemical agents.(More)
Primarily composed of cells on a porous membrane embedded in microfluidic channels, organ-on-a-Chip (OOC) models are coming into the spotlight as an innovative, new approach to in vitro modeling. However, more work is required to understand the impact OOCs have on cellular function including basal metabolism, barrier resistance and oxygen consumption.(More)
Environmental problems including water and air pollution, over fertilization, insufficient wastewater treatment and even ecological disaster are receiving greater attention in the technical and scientific area. In this paper, a method for water quality monitoring using living green algae (Chlorella Kessleri) with the help of the intelligent mobile lab(More)
Electrochemical microsensors in the close vicinity of living cells allow label-free monitoring of extracellular acidification, cellular respiration and changes in cellular morphology. With such a technology it is possible to determine the hazardous potential of new chemicals in the field of toxicology. Further applications are in the field of individualized(More)
  • 1