Joachim Mathiesen

Learn More
Using empirical data from a social media site (Twitter) and on trading volumes of financial securities, we analyze the correlated human activity in massive social organizations. The activity, typically excited by real-world events and measured by the occurrence rate of international brand names and trading volumes, is characterized by intermittent(More)
Ecological systems comprise an astonishing diversity of species that cooperate or compete with each other forming complex mutual dependencies. The minimum requirements to maintain a large species diversity on long time scales are in general unknown. Using lichen communities as an example, we propose a model for the evolution of mutually excluding organisms(More)
Complex networks are important tools for analyzing the information flow in many aspects of nature and human society. Using data from the microblogging service Twitter, we study networks of correlations in the occurrence of words from three different categories, international brands, nouns and US major cities. We create networks where the strength of links(More)
The spatial rock-paper-scissors ecosystem, where three species interact cyclically, is a model example of how spatial structure can maintain biodiversity. We here consider such a system for a broad range of interaction rates. When one species grows very slowly, this species and its prey dominate the system by self-organizing into a labyrinthine(More)
In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large(More)
The rock-paper-scissors game is a model example of the ongoing cyclic turnover typical of many ecosystems, ranging from the terrestrial and aquatic to the microbial. Here we explore the evolution of a rock-paper-scissors system where three species compete for space. The species are allowed to mutate and change the speed by which they invade one another. In(More)
Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a(More)
In healthy blood vessels with a laminar blood flow, the endothelial cell division rate is low, only sufficient to replace apoptotic cells. The division rate significantly increases during embryonic development and under halted or turbulent flow. Cells in barrier tissue are connected and their motility is highly correlated. Here we investigate the long-range(More)