Joachim Lätzer

Learn More
In the laboratory, IM7 has been found to have an unusual folding mechanism in which an "on-pathway" intermediate with nonnative interactions is formed. We show that this intermediate is a consequence of an unusual cluster of highly frustrated interactions in the native structure. This cluster is involved in the binding of IM7 to its target, Colicin E7.(More)
We investigate how post-translational phosphorylation modifies the global conformation of a protein by changing its free energy landscape using two test proteins, cystatin and NtrC. We first examine the changes in a free energy landscape caused by phosphorylation using a model containing information about both structural forms. For cystatin the free energy(More)
Simulations based on perfectly funneled energy landscapes often capture many of the kinetic features of protein folding. We examined whether simulations based on funneled energy functions can also describe fluctuations in native-state protein ensembles. We quantitatively compared the site-specific local stability determined from structure-based folding(More)
Conformational restriction by fragment assembly and guidance in molecular dynamics are alternate conformational search strategies in protein structure prediction. We examine both approaches using a version of the associative memory Hamiltonian that incorporates the influence of water-mediated interactions (AMW). For short proteins (<70 residues), fragment(More)
We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that(More)
Protein structure prediction codes based on the associative memory Hamiltonian were used to probe the binding modes between the nuclear localization signal (NLS) polypeptide of NF-kappaB and the inhibitors IkappaBalpha and IkappaBbeta. Experimentally, it is known that the NLS polypeptide is unstructured in the NF-kappaB complex with DNA but it forms an(More)
Department of Physics, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Protein structure prediction codes based on the associative memory Hamiltonian were used to probe the binding modes between the nuclear localization signal (NLS) polypeptide of NF-κB and the inhibitors IκBα and IκBβ. Experimentally, it is known that the(More)
  • 1