Joachim Koeser

Learn More
The nuclear pore complex regulates cargo transport between the cytoplasm and the nucleus. We set out to correlate the governing biochemical interactions to the nanoscopic responses of the phenylalanineglycine (FG)-rich nucleoporin domains, which are involved in attenuating or promoting cargo translocation. We found that binding interactions with the(More)
Natively unfolded phenylalanine-glycine (FG)-repeat domains are alleged to form the physical constituents of the selective barrier-gate in nuclear pore complexes during nucleocytoplasmic transport. Presently, the biophysical mechanism behind the selective gate remains speculative because of a lack of information regarding the nanomechanical properties of(More)
Nuclear pore complexes (NPCs) facilitate macromolecular exchange between the nucleus and cytoplasm of eukaryotic cells. The vertebrate NPC is composed of approximately 30 different proteins (nucleoporins), of which around one third contain phenylalanine-glycine (FG)-repeat domains that are thought to mediate the main interaction between the NPC and soluble(More)
Nup153, one of the best characterized nuclear pore complex proteins (nucleoporins), plays a critical role in the import of proteins into the nucleus as well as in the export of RNAs and proteins from the nucleus. Initially an epitope of Nup153 was found to reside at the distal ring of the NPC, whereas more recently another epitope was localized to the(More)
Desmosomes are cell junctions and cytoskeleton-anchoring structures of epithelia, the myocardium, and dendritic reticulum cells of lymphatic follicles whose major components are known. Using cultured HT-1080 SL-1 fibrosarcoma-derived cells and transfection of cDNAs encoding specific desmosomal components, we have determined a minimum ensemble of proteins(More)
Phenylalanine-glycine (FG)-repeat nucleoporins (Nups) form the major components of the selective gating mechanism in the nuclear pore complex (NPC). Hence, a primary requirement is to understand how they vacillate between preventing the access of passively diffusing molecules and promoting the translocation of receptor-bound cargo into the NPC. To shed(More)
Nanomechanical cantilevers are small and thin, microfabricated silicon beams. They serve as extremely sensitive mechanical sensors, which transform processes occurring at their surface into a mechanical response. This unique signal transduction principle allows to measure surface stress occurring at the cantilever surface by monitoring the bending of the(More)
A new preparation procedure was developed for the stable adsorption of either the cytoplasmic or the nuclear face of native (i.e. in physiological buffer without detergent extraction and in the absence of chemical fixatives) Xenopus oocyte nuclear envelopes (NEs) onto silicon (Si) surfaces. This yields optimal structural preservation of the nuclear pore(More)
  • 1