Joachim Kaffanke

Learn More
A prototype of a new bimodal scanner was installed in our laboratory. This scanner combines magnetic resonance imaging (MRI) and positron emission tomography (PET) for brain studies. As the PET detector is located within the bore of the MRI scanner, simultaneous measurements become possible. The MR-component consists of a commercial 3T MRI scanner MAGNETOM(More)
Diffusion-weighted magnetic resonance imaging provides access to fiber pathways and structural integrity in fibrous tissues such as white matter in the brain. In order to enable better access to the sensitivity of the diffusion indices to the underlying microstructure, it is important to develop artificial model systems that exhibit a well-known structure,(More)
Diffusion tensor imaging is an important method for noninvasively acquiring structural information of the human brain. For advanced fiber tracking, the acquisition of diffusion-weighted (DW) images has to be performed along many different spatial directions, resulting in long scan times. Therefore, the ultra-fast imaging method, echo-planar imaging (EPI),(More)
A new algorithm is proposed for computing the discrete Fourier Transform (DFT) of purely phase encoded data acquired during Magnetic Resonance Imaging (MRI) experiments. These experiments use the SPRITE (Single Point Ramped Imaging with <i>T</i><sub>1</sub> Enhancement) method and multiple-point acquisition, sampling data in a nonuniform manner that(More)
  • 1