Joachim J. Li

Learn More
The stable propagation of genetic information requires that the entire genome of an organism be faithfully replicated once and only once each cell cycle. In eukaryotes, this replication is initiated at hundreds to thousands of replication origins distributed over the genome, each of which must be prohibited from re-initiating DNA replication within every(More)
Here a method is described to identify genes encoding proteins that recognize a specific DNA sequence. A bank of random protein segments tagged with a transcriptional activation domain is screened for proteins that can activate a reporter gene containing the sequence in its promoter. This strategy was used to identify an essential protein that interacts in(More)
Eukaryotic cells use numerous mechanisms to ensure that no segment of their DNA is inappropriately re-replicated, but the importance of this stringent control on genome stability has not been tested. Here we show that re-replication in Saccharomyces cerevisiae can strongly induce the initial step of gene amplification, increasing gene copy number from one(More)
BACKGROUND In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases of the Clb/Cdc28 family restrict the initiation of DNA replication to once per cell cycle by preventing the re-assembly of pre-replicative complexes (pre-RCs) at replication origins that have already initiated replication. This assembly involves the Cdc6-dependent loading(More)
Cyclin-dependent kinases (CDKs) use multiple mechanisms to block reassembly of prereplicative complexes (pre-RCs) at replication origins to prevent inappropriate rereplication. In Saccharomyces cerevisiae, one of these mechanisms promotes the net nuclear export of a pre-RC component, the Mcm2-7 complex, during S, G2, and M phases. Here we identify two(More)
To maintain genome stability, the entire genome of a eukaryotic cell must be replicated once and only once per cell cycle. In many organisms, multiple overlapping mechanisms block rereplication, but the consequences of deregulating these mechanisms are poorly understood. Here, we show that disrupting these controls in the budding yeast Saccharomyces(More)
Single molecule, real-time (SMRT) sequencing from Pacific Biosciences is increasingly used in many areas of biological research including de novo genome assembly, structural-variant identification, haplotype phasing, mRNA isoform discovery, and base-modification analyses. High-quality, public datasets of SMRT sequences can spur development of analytic tools(More)
To maintain genomic stability, reinitiation of eukaryotic DNA replication within a single cell cycle is blocked by multiple mechanisms that inactivate or remove replication proteins after G1 phase. Consistent with the prevailing notion that these mechanisms are redundant, we previously showed that simultaneous deregulation of three replication proteins,(More)
Evolutionary change in gene regulation is a key mechanism underlying the genetic component of organismal diversity. Here, we study evolution of regulation at the posttranslational level by examining the evolution of cyclin-dependent kinase (CDK) consensus phosphorylation sites in the protein subunits of the pre-replicative complex (RC). The pre-RC, an(More)
Two hydrolytic enzymes, namely lysozyme and trypsin, were covalently immobilized onto stainless steel surfaces using wet chemistry processes. The immobilization strategy took advantage of the spontaneous physisorption of the polymer poly(ethylene imine) (PEI) onto stainless steel to yield a firmly attached, thin organic layer containing a high density of(More)