Learn More
Human immunodeficiency virus type 1 (HIV-1) replication requires the expression of two classes of viral mRNA. The early class of HIV-1 transcripts is fully spliced and encodes viral regulatory gene products. The functional expression of one of these nuclear regulatory proteins, termed Rev (formerly Art or Trs), induces the cytoplasmic expression of the(More)
Human immunodeficiency virus type 1 (HIV-1) encodes a nuclear trans-activator, termed Rev, that is required for the expression of the viral structural proteins and, hence, for viral replication. The Rev protein acts posttranscriptionally to induce the sequence-specific nuclear export of unspliced HIV-1 mRNA species that are otherwise excluded from the cell(More)
Nuclear export of proteins containing leucine-rich nuclear export signals (NESs) is mediated by the export receptor CRM1/exportin1. However, additional protein factors interacting with leucine-rich NESs have been described. Here, we investigate human immunodeficiency virus type 1 (HIV-1) Rev-mediated nuclear export and Mason-Pfizer monkey virus (MPMV)(More)
The pathogenic human retrovirus human immunodeficiency virus type 1 (HIV-1) encodes two trans-acting nuclear proteins, tat and rev, whose functional expression is essential for viral replication in vitro. The tat protein greatly enhances the expression of both structural and regulatory genes of HIV-1 (linked to the viral long-terminal-repeat promoter(More)
Expression of human immunodeficiency virus type 1 structural proteins requires both the viral Rev trans-activator and its cis-acting RNA target sequence, the Rev response element (RRE). The RRE has been mapped to a conserved region of the HIV-1 env gene and is predicted to form a complex, highly stable RNA stem-loop structure. Site-directed mutagenesis was(More)
Eukaryotic initiation factor 5A(eIF-5A) is a cellular cofactor require d for the function of the human immunodeficiency virus type-1 (HIV-1) Rev trans-activator protein. The majority of a set of eIF-5A mutants did not support growth of yeast cells having an inactivated genomic copy of eIF-5A, indicating that the introduced mutation eliminated eIF-5A(More)
The HIV-1 Rev trans-activator is a nucleocytoplasmic shuttle protein that is essential for virus replication. Rev directly binds to unspliced and incompletely spliced viral RNA via the cis-acting Rev Response Element (RRE) sequence. Subsequently, Rev oligomerizes cooperatively and interacts with the cellular nuclear export receptor CRM1. In addition to(More)
Two evolutionarily distinct families of human retroviruses, the human immunodeficiency viruses (HIV) and the human T-cell leukaemia viruses (HTLV), have been defined (reviewed in ref. 1). Although these virus groups share tropism for human CD4+ T cells, they differ markedly in primary sequence, genetic organization and disease association (AIDS versus adult(More)
The HIV-1 REV protein binds to the stem II region of the REV-responsive element (RNA). Studies to further define the RNA sequence and structure specifically bound by REV protein identify a minimal RNA element of 40 nucleotides. Analysis of RNA fragments by gel retardation and filter binding suggest that a core element composed of one particular stem with(More)
HIV-1 integrates into the host chromosome and persists as a provirus flanked by long terminal repeats (LTRs). To date, treatment regimens primarily target the virus enzymes or virus-cell fusion, but not the integrated provirus. We report here the substrate-linked protein evolution of a tailored recombinase that recognizes an asymmetric sequence within an(More)