Joachim F Uhrig

Learn More
In-depth analysis of protein-protein interaction specificities of the MYB protein family of Arabidopsis thaliana revealed a conserved amino acid signature ([DE]Lx(2)[RK]x(3)Lx(6)Lx(3)R) as the structural basis for interaction between MYB and R/B-like BHLH proteins. The motif has successfully been used to predict new MYB/BHLH interactions for A. thaliana(More)
The organization of living cells is based on networks of interacting molecules. Systematic analysis of protein interactions of 3-aa loop extension (TALE) homeodomain proteins, fundamental regulators of plant meristem function and leaf development, revealed a highly connected, complex network. The network includes nine members of Arabidopsis thaliana ovate(More)
The nonstructural NSm protein of tomato spotted wilt tospovirus (TSWV) represents a putative viral movement protein involved in cell-to-cell movement of nonenveloped ribonucleocapsid structures. To study the molecular basis of NSm function, we expressed the protein in Escherichia coli and investigated protein-protein and protein-RNA interactions of NSm(More)
Protein-protein interactions are fundamental to virtually every aspect of cellular functions. Blue, green and yellow bimolecular fluorescence complementation (BiFC) systems based on GFP and its variants allow the investigation of protein-protein interactions in vivo. We have developed the first red BiFC system based on an improved monomeric red fluorescent(More)
The actin-nucleating ARP2-ARP3 complex controls cell shape in plants in many different cell types. Its activity is controlled by a multimeric complex containing BRK1 (also known as HSPC300), NAP1, SRA1, ABI and SCAR/WAVE. In this study, we focus on the function of the five putative SCAR homologues in Arabidopsis and we provide biochemical evidence that(More)
In plants, Rop/Rac GTPases have emerged as central regulators of diverse signalling pathways in plant growth and pathogen defence. When active, they interact with a wide range of downstream effectors. Using yeast two-hybrid screening we have found three previously uncharacterized receptor-like protein kinases to be Rop GTPase-interacting molecules: a(More)
Anthocyanins are natural pigments that accumulate only in light-grown and not in dark-grown Arabidopsis plants. Repression of anthocyanin accumulation in darkness requires the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) ubiquitin ligase, as cop1 and spa mutants produce anthocyanins also in the dark. Here, we show that COP1 and SPA(More)
The plant homologs of the archaeal DNA topoisomerase VI complex are required for the progression of endoreduplication cycles. Here, we describe the identification of MIDGET (MID) as a novel component of topoisomerase VI. We show that mid mutants show the same phenotype as rhl1, rhl2, and top6B mutants and that MID protein physically interacts with RHL1. The(More)
The nucleocapsid protein (N) of tomato spotted wilt tospovirus (TSWV) plays a central role in the viral life cycle. With the aid of the yeast two-hybrid system and surface plasmon resonance analysis, homotypic interaction and multimerization of the N protein was detected. Analysis of deletion mutants identified two binding regions in the protein, located at(More)
Interactions between plants and fungal pathogens require a complex interplay at the plant–fungus interface. Extracellular effector proteins are thought to play a crucial role in establishing a successful infection. To identify pathogenesis-related proteins in Ustilago maydis we combined the isolation of secreted proteins using a signal sequence trap(More)