Joachim Elsig

Learn More
The stable carbon isotope ratio of atmospheric CO(2) (δ(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present δ(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in δ(13)C(atm) during the early deglaciation can be(More)
Reconstructions of atmospheric CO(2) concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO(2) concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere,(More)
Measurements of carbon and oxygen isotopes of CO(2) by continuous flow isotope ratio mass spectrometry are widely used in environmental studies and climate change research. Yet, there are remaining problems associated with the reproducibility of measurements, in particular when high precision is required and/or the amount of sample material is limited.(More)
The equilibration method is the present-day standard method for measuring delta18O in water samples. The mass-to-charge ratio of 45 is measured at the same time but generally not used for further analysis. We show that an improved equilibration method can be used for precise determination of delta17O in addition to that of delta18O, and therefore can(More)
  • 1