Joachim Ankerhold

Learn More
We investigate the optimal control of open quantum systems, in particular, the mutual influence of driving and dissipation. A stochastic approach to open-system control is developed, using a generalized version of Krotov's iterative algorithm, with no need for Markovian or rotating-wave approximations. The application to a harmonic degree of freedom reveals(More)
Motivated by recent experiments on superconducting circuits consisting of a dc-voltage-biased Josephson junction in series with a resonator, quantum properties of these devices far from equilibrium are studied. This includes a crossover from a domain of incoherent to a domain of coherent Cooper pair tunneling, where the circuit realizes a driven nonlinear(More)
Standard optimal control methods perform optimization in the time domain. However, many experimental settings demand the expression of the control signal as a superposition of given waveforms. Since this type of constraint is not time-local, Optimal Control Theory cannot be used without modifications. Simplex methods, used as a substitute in this case, tend(More)
Electron transfer coupled to a collective vibronic degree of freedom is studied in strongly condensed phase and at lower temperatures where quantum fluctuations are essential. Based on an exact representation of the reduced density matrix of the electronic + reaction coordinate compound in terms of path integrals, recent findings on the overdamped limit in(More)
Quantum Brownian motion in the strong friction limit is studied based on the exact path integral formulation of dissipative systems. In this limit the time-nonlocal reduced dynamics can be cast into an effective equation of motion, the quantum Smoluchowski equation. For strongly condensed phase environments it plays a similar role as master equations in the(More)
For a quantum system coupled to a heat bath environment the strong friction limit is studied starting from the exact path integral formulation. Generalizing the classical Smoluchowski limit to low temperatures, a time evolution equation for the position distribution is derived and the strong role of quantum fluctuations in this limit is revealed.
BACKGROUND The trend for the fabrication of electrical circuits with nanoscale dimensions has led to impressive progress in the field of molecular electronics in the last decade. However, a theoretical description of molecular contacts as the building blocks of future devices is challenging, as it has to combine the properties of Fermi liquids in the leads(More)
The exact stochastic decomposition of non-Markovian dissipative quantum dynamics is combined with the time-dependent semiclassical initial value formalism. It is shown that even in the challenging regime of moderate friction and low temperatures, where non-Markovian effects are substantial, this approach allows for the accurate description of dissipative(More)
Motivated by several experimental activities to detect charge noise produced by a mesoscopic conductor with a Josephson junction as on-chip detector, the switching rate out of its zero-voltage state is studied. This process is related to the problem of thermal escape in presence of non-Gaussian fluctuations. In the relevant case of weak higher than second(More)
The quantum dynamics of a two-state system coupled to a bosonic reservoir with sub-Ohmic spectral density is investigated for strong friction. Numerically exact path integral Monte Carlo methods reveal that a changeover from coherent to incoherent relaxation does not occur for a broad class of spectral distributions. In nonequilibrium coherences associated(More)