Learn More
Hybridization has many and varied impacts on the process of speciation. Hybridization may slow or reverse differentiation by allowing gene flow and recombination. It may accelerate speciation via adaptive introgression or cause near-instantaneous speciation by allopolyploidization. It may have multiple effects at different stages and in different spatial(More)
Studies of reproductive isolation between homoploid hybrid species and their parent species have rarely been carried out. Here we investigate reproductive barriers between a recently recognized hybrid bird species, the Italian sparrow Passer italiae and its parent species, the house sparrow P. domesticus and Spanish sparrow P. hispaniolensis. Reproductive(More)
Sexual selection may drive speciation, but most research focuses on pre-copulatory sexual selection, overlooking post-copulatory processes. Post-copulatory sexual selection in allopatric populations could drive divergence in post-copulatory pre-zygotic (PCPZ) phenotypes, limiting gene flow upon secondary contact. Here, we performed in vitro experiments(More)
Postzygotic isolation in the form of reduced viability and/or fertility of hybrids may help maintain species boundaries in the face of interspecific gene flow. Past hybridization events between house sparrows (Passer domesticus) and Spanish sparrows (P. hispaniolensis) have given rise to a homoploid hybrid species, the Italian sparrow (P. italiae). Although(More)
Theory predicts that variability in size and the shape of a morphological trait should often be stable both at the intra- and interspecific level. We studied variation in beak integration among several populations of two species of the genus Passer, a hybrid species, the Italian sparrow (Passer italiae) and one of its parents, the Spanish sparrow (Passer(More)
  • 1