Learn More
Members of the genus Dehalococcoides are well-known for their capacity to reductively dechlorinate chlorinated organic pollutants. The availability of quantitative and sensitive detection methods is of major interest for research on the ecology of those environmentally important micro-organisms. In this paper we describe the development of a Catalyzed(More)
The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day(-1)). Columns were(More)
Microbial reductive dechlorination of trichloroethene (TCE) and perchloroethene (PCE) in the vicinity of their dense non-aqueous phase liquid (DNAPL) has been shown to accelerate DNAPL dissolution. A three-layer diffusion-cell was developed to quantify this bio-enhanced dissolution and to measure the conditions near the DNAPL interface. The 12 cm long(More)
Microbial reductive dechlorination of trichloroethylene (TCE) in groundwater can be stimulated by adding of electron donors. However, side reactions such as Fe (III) reduction competes with this reaction. This study was set-up to relate the inhibition of microbial TCE dechlorination to the quantity and quality (mineralogy) of Fe (III) in the substrate and(More)
Acidification due to microbial dechlorination of trichloroethene (TCE) can limit the bio-enhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). This study related the dissolution enhancement of a TCE DNAPL to the pH buffer capacity of the medium and the type of electron donor used. In batch systems, dechlorination was optimal at pH7.1-7.5, but(More)
Microbial dechlorination of trichloroethene (TCE) is inhibited at elevated TCE concentrations. A batch experiment and modeling analysis were performed to examine whether this self-inhibition is related to an enhanced cell decay or a reduced dechlorination activity at increasing TCE concentrations. The batch experiment combined four different initial TCE(More)
The toxicity of trichloroethene (TCE) likely restricts microbial activity in close vicinity of a TCE dense nonaqueous phase liquid (DNAPL). This study examined the distribution of a dechlorinating community in relation to the distance from a TCE DNAPL using a diffusion-cell set-up. Subcultures of the KB-1(™) culture dechlorinating TCE to cis-dichloroethene(More)
Electron donor limitations likely reduce microbial enhanced trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) dissolution. This study quantitatively examined the relation between the DNAPL dissolution enhancement and the electron donor supply rate. An experiment used diffusion-cells with a 5.5 cm central sand layer, separating a DNAPL layer from(More)
Microbial migration towards a trichloroethene (TCE) dense non-aqueous phase liquid (DNAPL) could facilitate the bioaugmentation of TCE DNAPL source zones. This study characterized the motility of the Geobacter dechlorinators in a TCE to cis-dichloroethene dechlorinating KB-1(™) subculture. No chemotaxis towards or away from TCE was found using an agarose(More)
  • 1