Joël Piraux

Learn More
A new numerical method, called the Explicit Simplified Interface Method (ESIM), is developed in the context of acoustic wave propagation in heterogeneous media. Equations of acoustics are written as a first-order linear hyperbolic system. Away from interfaces, a standard scheme (Lax-Wendroff, TVD, WENO...) is used in a classical way. Near interfaces, the(More)
A method is proposed for accurately describing arbitrary-shaped free boundaries in finitedifference schemes for elastodynamics, in a time-domain velocity-stress framework. The basic idea is as follows: fictitious values of the solution are built in vacuum, and injected into the numerical integration scheme near boundaries. The most original feature of this(More)
This paper deals with the numerical modeling of transient mechanical waves in linear viscoelastic solids. Dissipation mechanisms are described using the generalized Zener model. No time convolutions are required thanks to the introduction of memory variables that satisfy local-in-time differential equations. By appropriately choosing the relaxation(More)
Propagation of transient mechanical waves in porous media is numerically investigated in 1D. The framework is the linear Biot’s model with frequency-independant coefficients. The coexistence of a propagating fast wave and a diffusive slow wave makes numerical modeling tricky. A method combining three numerical tools is proposed: a fourth-order ADER scheme(More)
Elastic wave propagation is studied in a heterogeneous 2-D medium consisting of an elastic matrix containing randomly distributed circular elastic inclusions. The aim of this study is to determine the effective wavenumbers when the incident wavelength is similar to the radius of the inclusions. A purely numerical methodology is presented, with which the(More)
The propagation of elastic waves in a fractured rock is investigated, both theoretically and numerically. Outside the fractures, the propagation of compressional waves is described in the simple framework of one-dimensional linear elastodynamics. The focus here is on the interactions between the waves and fractures: for this purpose, the mechanical behavior(More)