João Loures Salinet

Learn More
INTRODUCTION The role of substrates in the maintenance of persistent atrial fibrillation (persAF) remains poorly understood. The use of dominant frequency (DF) mapping to guide catheter ablation has been proposed as a potential strategy, but the characteristics of high DF sites have not been extensively studied. This study aimed to assess the DF(More)
This paper presents a QRS-T subtraction approach for atrial fibrillation (AF) intracardiac atrial electrograms (AEG). It also presents a comparison between the proposed method and two alternative ventricular subtraction techniques: average beat subtraction (ABS) using a fixed length window and an approach based on flat interpolation for QRS cancellation.(More)
The main objective of this article is to implement and compare QRS subtraction techniques for intra-cardiac atrial electrograms based on using the surface ECG as a reference. A band-pass filter between 8 and 20 Hz followed by rectification, and then a low-pass filter at 6 Hz are used for QRS detection. QRS subtraction was performed using three different(More)
Ablation of persistent atrial fibrillation (persAF) targeting complex fractionated atrial electrograms (CFAEs) detected by automated algorithms has produced conflicting outcomes in previous electrophysiological studies. We hypothesize that the differences in these algorithms could lead to discordant CFAE classifications by the available mapping systems,(More)
Atrial fibrillation is the most common cardiac arrhythmia, and it is associated with increased risk of stroke, heart failure, and mortality. This work describes spectral analysis techniques that are being used in conjunction with visualization algorithms to help guide catheter ablation procedures that aim at treating patients with arrhythmia.
Atrial electrograms (EGMs) with high dominant frequency (DF) are believed to represent atrial substrates with periodic activation responsible for the maintenance of persistent atrial fibrillation (persAF). This study aimed to assess the DF spatiotemporal behavior using high density noncontact mapping in persAF. For 8 patients undergoing left atrial (LA)(More)
BACKGROUND Areas with high frequency activity within the atrium are thought to be 'drivers' of the rhythm in patients with atrial fibrillation (AF) and ablation of these areas seems to be an effective therapy in eliminating DF gradient and restoring sinus rhythm. Clinical groups have applied the traditional FFT-based approach to generate the(More)
Dominant frequency (DF) mapping has been widely used to study the pathophysiology of atrial fibrillation (AF). In this study, a DF mapping system was developed to guide catheter ablation on electro-physiology (EP) procedures of persistent AF patients. The proposed platform has an automated graphical user interface (GUI) that processes non-contact unipolar(More)
The unstable temporal behavior of atrial electrical activity during persistent atrial fibrillation (persAF) might influence ablation target identification, which could explain the conflicting persAF ablation outcomes in previous studies. We sought to investigate the temporal behavior and consistency of atrial electrogram (AEG) fractionation using different(More)
Complex fractionated atrial electrograms (CFAEs) have been suggested as potential targets for ablation for persistent atrial fibrillation (AF), but there is no consensus on their definition. This study aimed to quantify the impact of different CFAE definitions on automated CFAE detection based on NavX criteria, and compare them with visual assessment.(More)