Learn More
Nitric oxide (NO) is a small molecule with distinct roles in diverse physiological functions in biological systems, among them the control of the apoptotic signalling cascade. By combining proteomic, genetic and biochemical approaches we demonstrate that NO and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are crucial mediators of yeast apoptosis. Using(More)
The interaction of four phenolic acids, representative of three chemical groups present in human diet, with peroxyl radicals was studied in vitro in a low density lipoprotein (LDL) oxidation model. The controlled oxidation of LDL was initiated by free radicals generated from a hydrophilic azo initiator and followed by monitoring the oxygen consumption and(More)
The fluorescent polyunsaturated parinaric acid incorporated in LDL particles is highly sensitive to the concentration of peroxyl radicals in the aqueous medium, undergoing rapidly oxidative degradation, as detected by a quenching of fluorescence, without delay after radical generation in solution. Ascorbate, cysteine, and urate suppress the parinaric acid(More)
The antioxidant activity of catechins and oligomeric procyanidins against low density lipoproteins peroxidation was studied by means of three distinct methods: cis-parinaric acid fluorescence decay, conjugated-dienes detection, and oxygen consumption. A relationship between the radical trapping efficiency of procyanidins and their structure was(More)
The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient(More)
Nitric oxide (*NO) is a ubiquitous signaling molecule that participates in the neuromolecular phenomena associated with memory formation. In the hippocampus, neuronal *NO production is coupled to the activation of the NMDA-type of glutamate receptor. Although *NO-mediated signaling has been associated with soluble guanylate cyclase activation, cytochrome(More)
Nitric oxide (NO) is a diffusible intercellular messenger, acting via volume signaling in the brain and, therefore, the knowledge of its temporal dynamics is determinant to the understanding of its neurobiological role. However, such an analysis in vivo is challenging and indirect or static approaches are mostly used to infer NO bioactivity. In the present(More)
Acetylcholine (ACh) modulates neuronal network activities implicated in cognition, including theta and gamma oscillations but the mechanisms remain poorly understood. Joint measurements of cholinergic activity and neuronal network dynamics with high spatio-temporal resolution are critical to understand ACh neuromodulation. However, current electrochemical(More)
Nitric oxide (NO(*)) is a diffusible regulatory molecule involved in a wide range of physiological and pathological events. At the tissue level, a local and temporary increase in NO(*) concentration is translated into a cellular signal. From our current knowledge of biological synthesis and decay, the kinetics and mechanisms that determine NO(*)(More)
Endogenous alpha-tocopherol of low density lipoprotein (LDL) particles exposed to ferrylmyoglobin (iron in the form of FeIV = O) vanishes as a function of myoglobin concentration. After alpha-tocopherol depletion, subsequent heavy lipid peroxidation is prevented by caffeic and p-coumaric acids, i.e., phenolic acids present in foods and beverages, by a(More)