Learn More
The increase in life expectancy is accompanied by an increased risk of developing neurodegenerative disorders and age is the most relevant risk factor for the appearance of cognitive decline. While decreased neuronal count has been proposed to be a major contributing factor to the appearance of age-associated cognitive decline, it appears to be insufficient(More)
Nitric oxide (*NO) is a ubiquitous signaling molecule that participates in the neuromolecular phenomena associated with memory formation. In the hippocampus, neuronal *NO production is coupled to the activation of the NMDA-type of glutamate receptor. Although *NO-mediated signaling has been associated with soluble guanylate cyclase activation, cytochrome(More)
Nitric oxide (NO) is a diffusible intercellular messenger, acting via volume signaling in the brain and, therefore, the knowledge of its temporal dynamics is determinant to the understanding of its neurobiological role. However, such an analysis in vivo is challenging and indirect or static approaches are mostly used to infer NO bioactivity. In the present(More)
Acetylcholine (ACh) modulates neuronal network activities implicated in cognition, including theta and gamma oscillations but the mechanisms remain poorly understood. Joint measurements of cholinergic activity and neuronal network dynamics with high spatio-temporal resolution are critical to understand ACh neuromodulation. However, current electrochemical(More)
Nitric oxide (NO(*)) is a diffusible regulatory molecule involved in a wide range of physiological and pathological events. At the tissue level, a local and temporary increase in NO(*) concentration is translated into a cellular signal. From our current knowledge of biological synthesis and decay, the kinetics and mechanisms that determine NO(*)(More)
Nitric oxide (*NO) production in response to stimulation of the NMDA glutamate receptor is implicated not only in the synaptic plasticity in hippocampus but may also participate in excitotoxic cell death. Using *NO-selective microssensors inserted into the diffusional field of *NO in acute hippocampal slices, we describe the *NO concentration dynamics(More)
Nitric oxide ((•)NO) is a labile endogenous free radical produced upon glutamatergic neuronal activity in hippocampus by neuronal nitric oxide synthase (nNOS), where it acts as a modulator of both synaptic plasticity and cell death associated with neurodegeneration. The low CNS levels and fast time dynamics of this molecule require the use of rapid(More)
The understanding of the unorthodox actions of neuronal-derived nitric oxide ((•)NO) in the brain has been constrained by uncertainties regarding its quantitative profile of change in time and space. As a diffusible intercellular messenger, conveying information associated with its concentration dynamics, both the synthesis via glutamate stimulus and(More)
Glutamate is the major excitatory amino acid of the mammalian brain but can be toxic to neurones if its extracellular levels are not tightly controlled. Astrocytes have a key role in the protection of neurones from glutamate toxicity, through regulation of extracellular glutamate levels via glutamate transporters and metabolic and antioxidant support. In(More)
The coupling between neuronal activity and cerebral blood flow (CBF) is essential for normal brain function. The mechanisms behind this neurovascular coupling process remain elusive, mainly because of difficulties in probing dynamically the functional and coordinated interaction between neurons and the vasculature in vivo. Direct and simultaneous(More)