Jlenia Toppi

Learn More
In this study we illustrate a methodology able to follow and study concurrent and simultaneous brain processes during cooperation between individuals, with non invasive EEG methodologies. We collected data from fourteen pairs of subjects while they were playing a card game with EEG. Data collection was made simultaneously on all the subjects during the card(More)
OBJECTIVE Motor imagery (MI) is assumed to enhance poststroke motor recovery, yet its benefits are debatable. Brain-computer interfaces (BCIs) can provide instantaneous and quantitative measure of cerebral functions modulated by MI. The efficacy of BCI-monitored MI practice as add-on intervention to usual rehabilitation care was evaluated in a randomized(More)
The aim of this research is to analyze the changes in the EEG frontal activity during the observation of commercial videoclips. In particular, we aimed to investigate the existence of EEG frontal asymmetries in the distribution of the signals’ power spectra related to experienced pleasantness of the video, as explicitly rated by the eleven experimental(More)
Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI)(More)
Disorders of Consciousness (DOC) like Vegetative State (VS), and Minimally Conscious State (MCS) are clinical conditions characterized by the absence or intermittent behavioral responsiveness. A neurophysiological monitoring of parameters like Event-Related Potentials (ERPs) could be a first step to follow-up the clinical evolution of these patients during(More)
This paper presents some considerations about the use of adequate statistical techniques in the framework of the neuroelectromagnetic brain mapping. With the use of advanced EEG/MEG recording setup involving hundred of sensors, the issue of the protection against the type I errors that could occur during the execution of hundred of univariate statistical(More)
BACKGROUND Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. METHODS We used high-resolution EEG(More)
Driving tasks are vulnerable to the effects of sleep deprivation and mental fatigue, diminishing driver's ability to respond effectively to unusual or emergent situations. Physiological and brain activity analysis could help to understand how to provide useful feedback and alert signals to the drivers for avoiding car accidents. In this study we analyze the(More)
One of the main limitations of the brain functional connectivity estimation methods based on Autoregressive Modeling, like the Granger Causality family of estimators, is the hypothesis that only stationary signals can be included in the estimation process. This hypothesis precludes the analysis of transients which often contain important information about(More)