Learn More
Human face recognition technology is a popular research topic in the biometrics identification area. Face detection is the most important pre-processing module of a face recognition system, and it plays an important role in applications such as video surveillance, human computer interface. The purpose of the face detection is to search and orient faces in(More)
This paper is aimed to develop a Brownian dynamics simulation method for strongly confined semiflexible polymers where numerical simulation plays an indispensable role in complementing theory and experiments. A wormlike chain under strong confinement is modeled as a string of virtual spherical beads connected by inextensible rods with length varying(More)
A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the(More)
High Peak to Average Power Ratio (PAPR) is a central obstacle to MC-CDMA system. Selected Mapping (SLM) is an effective method to reduce PAPR of MC-CDMA signal. In SLM the most direct infection of PAPR is what sequence is used as the phase sequence. A new Pseudo Random Interferometry code is proposed as the phase sequence for SLM to reduce PAPR of MC- CDMA(More)
A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and(More)
With a long-term objective toward a quantitative understanding of cell adhesion, we consider an idealized theoretical model of a cluster of molecular bonds between two dissimilar elastic media subjected to an applied tensile load. In this model, the distribution of interfacial traction is assumed to obey classical elastic equations whereas the rupture and(More)
Focal adhesions are clusters of specific receptor-ligand bonds that link an animal cell to an extracellular matrix. To understand the mechanical responses of focal adhesions, here we develop a stochastic-elasticity model of a periodic array of adhesion clusters between two dissimilar elastic media subjected to an inclined tensile stress, in which stochastic(More)
In this article, we adopt a continuum model from Sun and Wirtz (2006. Biophys. J. 90:L10-L12) to show that, for the enveloped virus entry into host cells, the binding energy of the receptor-ligand complex can drive the engulfment of the viral particle to overcome the resistance alternatively dominated by the membrane deformation and cytoskeleton deformation(More)
Apparent controversies exist on whether the persistence length of microtubules depends on its contour length. This issue is particularly challenging from a theoretical point of view due to the tubular structure and strongly anisotropic material property of microtubules. Here we adopt a higher order continuum orthotropic thin shell model to study the(More)
Experiments have shown that stable adhesion of a variety of animal cells on substrates prepared with precisely controlled ligand distribution can be formed only if the ligand spacing is below 58 nm. To explain this phenomenon, here we propose a confined polymer model to study the stability of molecular adhesion mediated by polymer repellers and(More)