Jiyoung A Hong

Learn More
Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is required for the biosynthesis of all sulfur-containing metabolites, including cysteine and methionine. The reduction of sulfate requires its activation via an ATP-dependent activation to form adenosine-5'-phosphosulfate (APS). Depending on the species, APS can be(More)
High-throughput and unbiased binding assays have proven useful in probe discovery for a myriad of biomolecules, including targets of unknown structure or function and historically challenging target classes. Over the past decade, a number of novel formats for executing large-scale binding assays have been developed and used successfully in probe discovery(More)
Tuberculosis is among the world's deadliest infectious diseases. APS reductase catalyzes the first committed step in bacterial sulfate reduction and is a validated drug target against latent tuberculosis infection. We performed a virtual screening to identify APSR inhibitors. These inhibitors represent the first non-phosphate-based molecules to inhibit(More)
Unbiased binding assays involving small-molecule microarrays were used to identify compounds that display unique patterns of selectivity among members of the zinc-dependent histone deacetylase family of enzymes. A novel, hydroxyquinoline-containing compound, BRD4354, was shown to preferentially inhibit activity of HDAC5 and HDAC9 in vitro. Inhibition of(More)
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of cysteine and is essential for survival in the latent phase of tuberculosis infection. The reaction catalyzed by APR involves the nucleophilic attack by conserved Cys-249 on adenosine 5'-phosphosulfate,(More)
Mycobacterium tuberculosis adenosine-5'-phosphosulfate (APS) reductase is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. To facilitate the development of potent and specific inhibitors of APS reductase, we have probed the molecular determinants that underlie binding and(More)
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (MtAPR) is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. The enzyme harbors a [4Fe-4S](2+) cluster that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid sequence. The(More)
[reaction: see text]. The reaction of gem-difluoropropargyl electrophiles with Grignard reagents is complicated by the inherent difficulty of executing nucleophilic substitutions on a CF2 group, and the facile formation of carbenoid intermediates arising from alpha-elimination of fluoride. In the presence of an excess amount of a copper salt, a Grignard(More)
  • 1