Learn More
TLRs mediate diverse signaling after recognition of evolutionary conserved pathogen-associated molecular patterns such as LPS and lipopeptides. Both TLR2 and TLR4 are known to trigger a protective immune response as well as cellular apoptosis. In this study, we present evidence that TLR4, but not TLR2, mediates an autoregulatory apoptosis of activated(More)
Microglia are innate immune cells in the central nervous system. Activation of microglia plays an important role in the processes of several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated microglia can produce various proinflammatory cytokines and nitric oxide (NO), which may exert neurotoxic(More)
Hypoxia is an important biological signal that regulates a wide variety of physiological responses. At the same time, hypoxia is involved in multiple pathological situations. In particular, hypoxia is closely associated with neural injury in the brain. Hypoxia has been recently proposed as a neuroinflammatogen, as it can induce the inflammatory activation(More)
BACKGROUND AND PURPOSE Obovatol isolated from the medicinal herb Magnolia obovata exhibits a variety of biological activities. Here, the effect of obovatol and its mechanism of action on microglial activation, neuroinflammation and neurodegeneration were investigated. EXPERIMENTAL APPROACH In microglial BV-2 cells stimulated with lipopolysaccharide (LPS),(More)
In the course of screening inhibitors of matrix metalloproteinase (MMP)-9 induction in macrophages, we isolated decursin, a coumarin compound, from the roots of Angelicae gigas. As a marker for the screening and isolation, we tested expression of MMP-9 in RAW264.7 cells and THP-1 cells after treatment with bacterial lipopolysaccharide (LPS), the TLR-4(More)
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may contribute to neuronal cell death. Inhibition of glial activation(More)
Excessive microglial activation with overexpression of proinflammatory cytokines and oxidative stress products is linked to the progression of several neurodegenerative diseases; therefore, suppression of microglial activation is a potential therapeutic approach against these diseases. Since nitric oxide (NO) is one of the major inflammatory mediators that(More)
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glia cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may influence neuronal cell survival. Recent studies have demonstrated(More)
The microglial activation plays an important role in the progression of neurodegenerative diseases by secreting various proinflammatory cytokines and neurotoxic factors. Inhibition of microglial activation may alleviate neurodegenerative processes. To search for novel therapeutic agents against neuroinflammatory diseases, several fluorovinyloxyacetamide(More)
Neuroinflammation has recently been implicated as an important mechanism responsible for the progression of neurodegenerative diseases. Activated microglia produce various proinflammatory cytokines and nitric oxide (NO) that are toxic to neurons. Thus, inhibition of microglial activation may alleviate neuroinflammatory and neurodegenerative processes. Among(More)