Learn More
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glial cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may contribute to neuronal cell death. Inhibition of glial activation(More)
Hypoxia is an important biological signal that regulates a wide variety of physiological responses. At the same time, hypoxia is involved in multiple pathological situations. In particular, hypoxia is closely associated with neural injury in the brain. Hypoxia has been recently proposed as a neuroinflammatogen, as it can induce the inflammatory activation(More)
Glial activation and neuroinflammatory processes play an important role in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and HIV dementia. Activated glia cells can secrete various proinflammatory cytokines and neurotoxic mediators, which may influence neuronal cell survival. Recent studies have demonstrated(More)
Microglia-driven inflammatory responses have both neuroprotective and neurotoxic effects in the CNS. The excessive and chronic activation of microglia, however, may shift the balance towards neurotoxic effects. In this regard, proteins secreted from activated microglia likely play a key role in the neurotoxic effects. To characterize secreted proteins of(More)
Chemical genetics is a new field of study that employs diverse small-molecule compounds to interrogate specific biological functions. The chemical genetics approach has been recently applied to microglial biology. Microglial cells are the primary immune cells of the brain, and are believed to play a major role in both host defense and tissue repair in the(More)
Neuropeptides are short-chain peptides found in brain tissue, some of which function as neurotransmitters and others as hormones. Neuropeptides may directly or indirectly modulate glial functions in the CNS. In the present study, effects of various neuropeptides on the viability and inflammatory activation of cultured microglia were investigated. Vasoactive(More)
Lipocalin 2 (LCN2), which is also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), binds small, hydrophobic ligands and interacts with cell surface receptor 24p3R to regulate diverse cellular processes. In the present study, we examined the role of LCN2 in the pathogenesis of neuropathic pain using a mouse model of spared nerve injury(More)
Lipocalin-2 (LCN2) is an acute phase protein induced in response to injury, infection or other inflammatory stimuli. Based on the previously reported involvement of LCN2 in chemokine induction and in the recruitment of neutrophils at the sites of infection or tissue injury, we investigated the role of LCN2 in the pathogenesis of chronic/persistent(More)
2'-Hydroxycinnamaldehyde (HCA) isolated from the stem bark of Cinnamomum cassia and its derivative 2'-benzoyloxycinnamaldehyde (BCA) were reported to have anti-angiogenic, anti-proliferative, and anti-inflammatory effects in several human cancer cells and RAW 264.7 macrophage cells. However, effects of HCA/BCA on the neuroinflammation have not been(More)
Small molecule fluorescent probes offer significant advantages over conventional antibody and fluorescent protein labeling techniques. Here we present and , dyes that label live microglia specifically. They may be applied to the isolation and imaging of live microglia when investigating their role in neuroinflammatory diseases.