Learn More
Singlet exciton fission transforms a molecular singlet excited state into two triplet states, each with half the energy of the original singlet. In solar cells, it could potentially double the photocurrent from high-energy photons. We demonstrate organic solar cells that exploit singlet exciton fission in pentacene to generate more than one electron per(More)
Our group works with soft semiconductors. These are materials comprised of molecules held together by weak van der Waals bonds. In comparison, the atoms in conventional semiconductors are held together by strong covalent bonds. Weak intermolecular bonds offer a tradeoff to engineers. Their disadvantage is an enhancement of disorder and charge localization,(More)
Our group works with soft semiconductors. These are materials comprised of molecules held together by weak van der Waals bonds. In comparison, the atoms in conventional semiconductors are held together by strong covalent bonds. Weak intermolecular bonds offer a tradeoff to engineers. Their disadvantage is an enhancement of disorder and charge localization,(More)
Our group works with soft semiconductors. These are materials comprised of molecules held together by weak van der Waals bonds. In comparison, the atoms in conventional semiconductors are held together by strong covalent bonds. Weak intermolecular bonds offer a tradeoff to engineers. Their disadvantage is an enhancement of disorder and charge localization,(More)
Our group works with soft semiconductors. These are materials comprised of molecules held together by weak van der Waals bonds. In comparison, the atoms in conventional semiconductors are held together by strong covalent bonds. Weak intermolecular bonds offer a tradeoff to engineers. Their disadvantage is an enhancement of disorder and charge localization,(More)